Skip to main content

Analyze

Bahía de los Ángeles, México.

Misria

Youth's brilliance and their fascination with the wickedness of plastic pollution are forming shoals of abundant possibility and collective futurity amid the rising tides of environmental destruction hitting Bahía de los Ángeles, México. Working in an entangled community with professional scientists, government conservationists, traditional outdoor educators, store owners, school principals, chefs, artists, and family this group of youth (ages 7-17) labor and dream as scientists and cartographers of the future. They voice unpopular questions and concerns, embody lives they mourn leaving behind but understand can't persist, demand more from adults and tourists, labor for imperfect data that they hope will hold community accountability, and (re)map community infrastructure, tracts of refuse, flows of water, chains of fossil fuel transport, food systems, and fishing practices. Despite these undeniable contributions, often adult partners in this work are still slow to take youth thinking and resistance seriously---it is easier to mediate on shortcomings or flaws in youths' epistemologies. Ignoring these sophisticated shoals is a flagrant dismissal of the pluralist thought and perspective required to attend, nonetheless halt, environmental injustices. As adults labor on/for youths' futures there should be a constant disruption of who holds expertise and why and rigorous attention given to youth voice.

Fowler, Kelsie. 2023. "Youth and Community Knowledges Create Thick Shoals of Abundance Amid the Plastiocene." In 4S Paraconference X EiJ: Building a Global Record, curated by Misria Shaik Ali, Kim Fortun, Phillip Baum and Prerna Srigyan. Annual Meeting of the Society of Social Studies of Science. Honolulu, Hawai'i, Nov 8-11.

AUSTIN MESO

jradams1
Annotation of

Texas produces the highest quantities of crude oil, natural gas, and lignite coal in the United States, which, on top of its long history of legislative support for conventional energy industries, contributes to its reputation as a fossil-fuel state (EIA 2017). Nevertheless, Austin, the state capital, harbors a wealth of local residents and organizations invested in transitioning to clean-energy resources. Motivations behind these investments differ widely, however, ranging from concerns about public health and social and environmental justice to creating quality jobs and spurring economic growth. During preliminary fieldwork, I identified four unique-yet-overlapping collectives of clean-energy practitioners: 1) Austin’s public sector, 2) energy scientists and engineers, 3) energy business advocates and entrepreneurs, and 4) climate and social justice activists. Based upon initial fieldwork, these collectives appear to conceive of the risks, affordances, and the proper sociotechnical means of energy transition in divergent, if not conflicting ways. In this research, I ask if and how these diverse energy-transition imaginaries appertain to differences in conceptions of “good evidence” and the appropriate use of scientific research and knowledge in decision-making. By analyzing how different collectives of clean-energy practitioners determine the proper means of leveraging science in energy transition, I will gain an understanding of the data and evidentiary challenges entailed in city-scale energy transitions, and urban environmental governance more generally.

GEO

jradams1
Annotation of

Swearingen’s (2010) account of the mainstream environmental movement in Austin documents which of Austin’s “green spaces” were successfully and unsuccessfully protected from development and from the deleterious effects of nearby industries. However, Tretter (2016) and Busch’s (2017) studies provide a necessary supplement, documenting how the Austin’s lesser valued spaces (which are mostly populated by communities of color) have been routinely polluted both by residential waste (location of trash dumps) and industrial off-gassing (Sematech and Motorola plants). It is unclear, however, from these accounts whether or not, or to what extent the Austin landscape has be marked by its energy system in particular.

During preliminary research, I witnessed numerous residents of various professions attest to the impact of Austin’s coal plant (Fayette) and natural gas plant (Decker) on Austin’s air quality. During my time in Austin I will be conversing with locals about the impact of Austin’s power generation on the local landscape as well as travelling throughout the city, observing the landscape, visiting energy production sites and Desired Development Zones.

According to a study by Environment America, Texas is by far the highest emitter of airborne mercury, with a total of 11,127 in 2010 (Madsen and Randall 2011). Ohio, the next highest emitter, produced 4,218 pounds. Texas has 6 of the top ten mercury producing coal-fired power plants in the U.S.

BIO

jradams1
Annotation of

There is a strong correlation between the location of toxic development and manufacturing associated with Austin’s tech industry and the location of communities of color, both of which are predominantly found in East Austin. PODER has had appreciable success in combating these developments and enlisting the help of Austin’s liberal environmental elite to do so. The extent to which Austin’s environmental justice community and environmental sustainability community see eye-to-eye on this issue, however, remains a question for this research.

Techno

jradams1
Annotation of

By the early 20th century, the unpredictability of the Colorado River was seen as the primary “natural barrier” to development, and the early entrepreneurs saw that the river was both the key and the biggest threat (Swearingen 2010). The rocky canyons and ravines that had been cut into the Edwards Plateau above Austin offered ample choice locations to create reservoirs for controlling the flow and supplying water and power to its developing urban areas. The first failed attempt to dam the river was undertaken as early as 1890. Austin’s elite business class arranged the financing of this $1.4 million dam through municipal bonds and hailed the dam as the engineering feat of the century. With the promise of electricity and a steady water supply, they were certain that it would bring Austin into modernity. However, this rhetoric did not hold water. In 1900, the first rise of the river since the dam’s construction completely destroyed the dam, caused $9 million in property damages, and killed 47 residents (Busch 2017). A few more private dams were built over the years, but these too would all succumb to the river’s turbulence. The first long-lasting infrastructural development to enable Austin to break free of its liquid boundaries wasn’t achieved until 1911 when a steel bridge was constructed followed by a trolley line. While the bridge rendered crossing the river less risky, and therefore successfully enabled the development of Austin’s southern neighborhoods (Swearingen 2010), this did nothing to help control the river and secure the water supply in times of drought. Developers were well aware that Austin’s growth would depend on an extensive system of dams, but there was simply not enough money to finance such an endeavor. Thus, a truly adequate system of water-management infrastructure would have to wait until the shift in economic philosophy that inspired the New Deal. Lyndon B. Johnson, a native Texan that quickly learned to master New Deal politics, managed to garner federal funds for the construction of numerous dams north of Austin, along with many other important infrastructural projects (Bush 2017). Two of the most important dams were the Tom Miller Dam (completed in 1940) and the Longhorn Dam (completed in 1960). These infrastructural successes garnered Johnson much fame and recognition and launched his political career (Sansom et. al 2008).

Today, Austin is a site of energy technology innovation. Austin Technology incubator has a strong energy focus, providing “niche management”. Pecan Street provides a means for incubated technologies to test and verify their innovations. From their website: “Pecan Street is the only organization or company that combines expertise in the ‘Internet of Things,’ high-velocity data acquisition, big data analytics, and lean product development to drive disruptive innovation for water and energy.”

DATA

jradams1
Annotation of

Pecan Street Inc. is a local 501(c)(3) that specializes in producing, analyzing, and sharing data on energy and water consumption practices as well as verifying new “smart home” technologies, electricity pricing, electric vehicle infrastructure, solar energy tech, and energy storage tech. On their company website, Pecan Street Inc. brags about having the largest utility consumption data port in the world and claims to “provide access to the world’s best data on consumer energy and water consumption behavior.” Their data source is a group of over 1000 volunteers that live in the Mueller community, a mixed use residential and commercial zone with its own microgrid that has the highest density of solar panels-plus-electric vehicles in the state of Texas. It was for this reason that the Mueller Community was chosen as one of the Austin locations for a federally funded experiment in energy storage. The project, named Austin SHINES, was co-funded by the DOE’s SunShot Initiative (during Obama’s administration) and the Texas Commission for Environmental Quality to test the efficiency of solar-plus-storage systems at different scales (household, residential/commercial, and utility scales). On October 4, 2018, Pecan Street posted a blog announcing that they had finally “crossed into the Big Data realm. With the acquisition of a few new project servers, [they] have surpassed one petabyte of data storage availability at Pecan Street.”

            According to their website, the data produced at Pecan Street is helping develop technology that can actually increase grid stability while also increasing its efficiency and capacity to incorporate distributed renewable energy resources: “Distributed storage, automated demand response, improved lighting ballasts, power supplies and grid control products can all mitigate or eliminate existing electricity challenges if they are developed using data that details the issues correctly.” Critical data scholars, however, have argued that data always require the presence of human experts to animate them (Gliteman 2013). But how, if at all, is this analytic commitment altered by the development of the “internet-of-things,” where humans are able to set parameters on smart-technology and smart-contracts, running on blockchain, so that these devices respond to data by themselves in real time?

AUSTIN MACRO

jradams1
Annotation of

           Texas is the highest energy consuming state in the second highest energy consuming nation in the world (EIA 2017). In fact, Texas has led the US in energy consumption rates every year since 1960, when the Environmental Information Administration started keeping track. Texas also has a long history and reputation as an energy producer and is currently the nation’s highest producer of crude-oil, natural gas, and lignite coal, and accounts for 30% of the United States’ total oil refining capacity (EIA 2017). On the other hand, Texas has recently become a world competitor in renewable energy. This has been achievable in part due to Texas’ unique state autonomy in concern to energy production and distribution, granted by the fact that Texas’ is the only electric grid in the US that does not incur federal regulation as it does not cross any state boundaries.

            Within Texas, Austin has shown a sustained commitment to developing its renewable energy infrastructure. Beginning with its innovative GreenChoice program in the late 80’s, Austin has been among the most fervent of US cities leading the charge for renewable energy integration. In the 1990’s, when Texas passed legislation to deregulate its energy market, Austin was one of the few Texas cities to retain control of its municipal utilities. By abstaining from deregulation, Austin maintained a higher capacity to alter its resource mix in accordance to the needs and desires of local residents. Today, Austin Energy the 8th largest publicly owned utility in the US. Austin’s utility also has strong connections with local university. The city’s clean energy initiatives receive substantial support from the University of Texas, whose Energy Institute is at the cutting edge of energy challenges and opportunities. Within this institute, UT’s Webber Energy Group and Pecan Street Inc. are particularly influential local actors, researching clean-energy initiatives such as the newly launched Austin Shines Program, which tests performance and efficiency of multiple scales and of solar plus storage combinations.

           Austin’s lack of a navigable river, precious metals, fossil fuels, and richly productive farmland have resulted in the city developing its higher education, technology, governmental, and cultural industries. The tech-side has been both a blessing and a curse for Austin’s environmental movement. “Smart Growth” emerged as a prominent rhetoric in the mid-to-late 1990’s and continues to influence Austin’s development to today. Due in part to the fact that Austin has this specialization in technology, plus a population with a recognized commitment to renewable energy, Austin was chosen as the site of a federally funded initiative, Austin SHINES, to test the efficiency of solar-plus-storage systems and various scales.

            Currently, 31% of Austin’s resource mix comes from renewable energy sources, compared to 10% for Texas as a whole and 13% for the US more broadly (Austin Energy 2017). Austin has numerous incentives to reduce energy consumption, as well as optional smart devices to help increase efficiency and enable demand response (which helps insure grid security). The city’s GreenChoice program was the first of its kind, which offered customers the opportunity to pay a premium to know that they are buying renewable energy rather than energy produced from nuclear or fossil fuels.

The Texas grid is managed by the Electricity Reliability Council of Texas (ERCOT) which is located in Austin. This regulator is also in charge of keeping the grid load at acceptable levels and to generate prices and keep up with the wholesale and retail markets.

Though the City of Austin has a history of strong environmental policies, the state has notoriously strong ties to the oil and gas industry. Thus, developers have managed to use the state to get around Austin’s city legislation (Swearingen 2010).

LA's Ocean Water

tschuetz
Annotation of

The plan to discontinue three natural gas plants in Los Angeles is partly justified by pointing to the problems of relying on ocean water needed for cooling the plants. An overview of the various negative impacts of this process can be found here.

LA's Green New Deal

tschuetz
Annotation of

In April 2019, LA's Mayor Garcetti has announced his vision for a "Green New Deal", with the goal to make the city carbon neutral by 2050. Earlier in February, he shared plans to stop renewing three natural gas plants. The GND is backed up by over 40 different groups such as Communities for a Better Environment, Earthjustice, C40 GRID Alternatives Greater Los Angeles, Pacoima Beautiful, and Sierra Club.

The list of targets for the GND reads as follows

  • "Building a zero carbon electricity grid — reaching an accelerated goal of 80% renewable energy supply by 2036 as we lead California toward 100% renewables by 2045.
  • Creating a Jobs Cabinet to bring city, labor, educational, and business leaders together to support our effort to create 300,000 green jobs by 2035 and 400,000 by 2050.
  • Mandating that all new municipally owned buildings and major renovations be all-electric, effective immediately, and that every building in Los Angeles — from skyscrapers to single family homes — become emissions free by 2050.
  • Achieving a zero waste future by phasing out styrofoam by 2021, ending the use of plastic straws and single-use takeout containers by 2028, and no longer sending any trash to landfills by 2050.
  • Recycling 100% of our wastewater by 2035; sourcing 70% of our water locally — a significant increase from our existing pathway; and nearly tripling the maximum amount of stormwater captured.
  • Planting and maintaining at least 90,000 trees — which will provide 61 million square feet of shade — citywide by 2021 and increasing tree canopy in low-income, severely heat impacted areas by at least 50% by 2028."

AUSTIN ECO/ATMO

jradams1
Annotation of

West Austin is home to a number of vulnerable species of amphibians and birds, as well as revered spaces of recreation (i.e. Barton Springs) that have garnered support to prevent development in these areas, but at the expense of the gentrification of Central East Austin (Walsh 2007; Tretter 2016; Busch 2017).

 

Flooding has always been a problem in Austin but, with climate change, the rate and intensity of floods has substantially increased. The Atlas 14 study conducted by the National Oceanic and Atmospheric Administration showed a 33% increase in the amount of rain that could fall in a 24-hour period (Holtgrieve and Neely 2019). This puts an additional 3,200 buildings and residences (increased from 4,000-7,200) at risk of flooding.

 

In August of 2011, one of the hottest years on record in Austin, the Texas grid was put at severe risk due to higher than normal use of AC units. A similar event happened in July of 2018, when hourly consumer demand set back-to-back records over the course of 2 hours, when peak load exceeded 72,000 MW (Rhodes 2018). That record was broken the following day when ERCOT registered 73,000 MW.

 

Through participant observation and interviews, I will gather data on how climate change has impacted the way this project’s thought collectives think about and use energy and energy technology, as well as if and how this has impacted their energy politics.