Skip to main content

Analyze

Overview of Formosa Drainage Study

annika

This supplementary legal document describes recommendations for storm- and waste-water management improvements for the Formosa petrochemical plant in Calhoun County, Texas. The text is a fairly standard drainage assessment. The author describes non-trivial discharge of pollutants out of the plant’s outfalls, which drain into local waters, and the inability of the plant’s systems to prevent flooding from even small storms. For some context on this, it is pretty standard to design a stormwater system to be able to drain the 100-year storm (that is, the storm with a 1% or less chance of occurring in any given year). Formosa’s Texas plant demonstrated the inability to convey even the 2-year storm.

Formosa Drainage Study

annika

Emphases are mine:

Problem areas were identified based on the results from the outfall drainage studies provided by Formosa. Thus, all the results in the OPCC rely on those studies, uncertainities associated with those studies, and the assumptions made for those studies, some of which may or may not be appropriate as I pointed out in Supplement #2 [Page 4]” (3)

“The proposed improvements assume that the conveyance capacity of the problem areas is increased 100%, which would be able to handle twice as much flow that it currently does. The results from the Drainage Study are not conclusive as to what storm event Formosa’s system currently is capable of conveying. The report does mention that the system is not capable of conveying the 2-year storm, and “sometimes” not even the 1-year storm event. (3)

“A 45% contingency is applied to the OPCC due to the uncertainties associated with underground utilities, likelihood of existence of low road crossings and need to replace those, groundwater impacts, other unknowns, and additional costs associated with engineering, etc. 45% is reasonable and in line with industry practices in my experience, especially given the large amount of unknown information available.” (4) 

“My opinion from my July 9, 2018 report that “there have been and are still pellets and/or plastic materials discharges above trace amounts through Outfall 001” is further supported by the deposition testimony of Lisa Vitale, as representative for Freese & Nichols, Inc, that she and her colleagues have seen floating white pellets or small plastic pieces in Lavaca Bay and in the area near outfall 001 as part of her work on the receiving water monitoring program for Formosa’s TPDES permit...Ms. Vitale also testified that she told John Hyak of Formosa about these sightings as well as has sent him water samples with the pellets about five or six times, including at least one time prior to 2010. This, along with the June 2010 EPA Report I cited in my July Report, demonstrates to me that Formosa was aware of problems related to discharges of plastics from its facility since at least in 2010.” (6)

 

Tanio_CollabBio_STS_COVID-19

ntanio

I live in Glendale, CA. I completed by PhD at UCLA in the Graduate School of Education in 2020. I am interested in collaborative, visual, and experitmental research methods. My dissertation used youth participatory action research (YPAR) to examine children's health knowledge of the chronic illness and organ (heart) transplantation. I am interested in how COVID-19 impacts youth educational experiences and reinforces educational disparities. 

I can reached at ntanio[at]gmail[dot]com

I am especially interested in:

How are K-12 schools (primary and secondary schools) responding to the COVID-19 pandemic, what kind of support have they been given, what problems have emerged, and how are these problems being tracked and responded to?

How are universities responding to the COVID-19 pandemic, what kind of support have they been given, what problems have emerged, and how are these problems being tracked and responded to?

Open question

Johanna Storz

 

The text left me with a question that I actually often find frustrating in the process of research. On page 6, the authors take up the criticism of a Fukushima resident who says: “[W]hat you call research does not give benefits to local people” (Miyamoto and Ankei, 2008, cited in Ankei, 2013, p.24). The authors here suggest adopting or borrowing terms from the field that are used by citizens to create a more “socially robust science” (Bonhoure et al. 2019, Nowotny, 2003). From the authors' point of view, this can be achieved above all by paying closer and careful attention to the language of citizen organizations and the contexts these groups work in. After further elaboration, the authors call for citizen science terms and concepts developed by, for and with citizens to better reflect the values, priorities, and stakes of its main agents and of all concerned parties. But I am not sure that this approach alone would be sufficient to adequately address such expressed criticism. Perhaps one should ask about the expectations of people one is researching with/about in order to enter into a conversation and to be able to understand this criticism. Perhaps the authors will address this point again in further publications. I think to ask oneself how to deal with this criticism methodically and ethically could also be very fruitful for empirical research in general.

Citizen science as a contested culturally specific term

lclplanche

This text argues that the umbrella term citizen science has come to describe a variety of organizations and structures that function in a very different way. Not only does the notion of citizen science cover a wide variety of situations, but the term itself makes references to different types of organizations and is not neutral. Japan had forms of "citizen science" which pre-existed the introduction of the English term, as heirs to the development of more engaged scientific practices by politically inclined scientists in the 1970s.

The tensions within the use of the term citizen science and its diverse embodiments take the form of the following: basically, the concept of citizen science in Japan is mostly used in the context of top-down participatory approaches. The organizations that emerged after the Fukushima disaster are much more varied than this and exist within a framework that had been previously developed in Japan. This framework included visions of participatory and democratic science making by citizens, for citizens, and of citizens. They are mostly local organizations that are sometimes but not always affiliated to a network. Some of them cooperate with more formal institutions, while others steer clear of any collaboration with formal science or governments, partly because there is a lot of distrust towards these institutions in Japan, especially since the Fukushima accident.

One of the pitfalls of the reputation that citizen science projects have in Japan is that they are associated with the anti-nuclear movement and are therefore associated with the far left. This causes a need for distantiation from any political association, which some of the organizations studied use.

Can social change be apolitical?

veralaub

"Considering that citizen activism evokes a negative image, and that some of the earliest citizen groups measuring radiation, including the Citizen Nuclear Information Center (Tokyo), have strong ties to antinuclear activism, “antinuclear” is a label many organizations initiated in the wake of Fukushima try to avoid. Disasters such as the Fukushima nuclear accident trigger different publics into action (Hasegawa, 2004, Leblanc, 1999). These citizens are not solely—or even necessarily—antinuclear activists, but primarily concerned citizens, whose main driver is to protect (in Japanese “mamoru”) and serve their community, as conventional information sources failed to do so (Morita et al. 2013). By publicly distancing themselves from activism, these organizations may gain credibility within their community. Born out of a sense of necessity (Morita et al. 2013, Kimura, 2016), these groups should therefore not be labeled as activists as such, but rather as active by default. Even if personal convictions lean towards antinuclear feelings, the organizations as such avoid taking a polarizing position, rather focusing on gathering the “right” data." (p.5)

I oppose this techno-optimistic approach and the expectation that data that is "right" will speak for itself. I would argue that data can and must be used for negotiations on social contracts, but the negotiations need be conducted actively. I can very much understand the necessity to not phrase political claims in a radical manner, if situated in a society in which activism evokes a negative image, but am not convinced that change can occur if no claims are being made in the first place?

"Albeit subjected to the same standards of general scientific enquiry (Morris-Suzuki, 2014, Coletti et al. 2017, Brown et al. 2016, Kuchinskaya, 2019), the scientific facts and evidence produced by these citizen groups serve the needs of the community, allowing them to gain control over their lives: "Citizen science connects directly to our lives: is the dose of my meal okay, is the school where my child goes to contaminated?"." (p.5)

I interpret this as the need to take individual action as well as individual responsibility to combat disaster. Is it possible to combat disaster in an individualized rather than a collective manner though?

Citizen science

Vera

As I am part of the group working on the Librizol Fire in Rouen, France, I find it very interesting to see and compare how social and cultural structures shape people's actions and options. e.g.: (Non-)knowledge and power hierachies, as well as infrastructures like universities, and environmental organizations; official/governmental actions (top-down) and citizen-le actions (bottom-up), and blurred lines and spaces inbetween.