Skip to main content

Analyze

Moana, Oceania

Misria

Remember the arrivals of Mā’ohi ancestors who traversed the sea and surged upon the shores. Over generations, many groups explored and peopled te fenua, travelling around the archipelagos by va’a and on bare foot. Te nūna’a Mā’ohi built up the land, and the land built up te nūna’a, with fare, fa’apū, tumu, marae, and stories. Te fenua and te nūna’a shared experiences and developed knowledges, year in, year out, together. 

In other worlds, those we call popa’āwere knowing and being in very different ways. Over time, te popa’ābuilt physical, spiritual, and epistemic walls to imagine a separation between themselves and the land. They dreamed of knowing without relation, and called it “objectivity.” Adrift in the violent nightmares of their mindless fantasies, te popa’ābecame ungrounded. They tried to fill this existential void through stories of supremacism, which they acted out through projects of transoceanic conquest. In their empty confusion, te popa’ācame to te fenua Mā’ohi with greed, envy, arrogance, disease, and weapons of mass destruction. 

Whether through deliberate genocide or oblivious indifference, popa’āarrivals decimated Mā’ohi communities, as local populations fell by 80% to 90%. This formative trauma foreshadowed disasters to come. Te popa’āstole te fenua’s physical wealth on a massive scale, and then imposed a nuclear weapons testing program, bringing radioactive waste, cancer, and other illness. Te popa’ātimed the introduction of mass tourism with atomic testing, to obscure the social, economic, and environmental impacts of the nuclear program. They deceived ta’ata Mā’ohi with empty stories, progressively luring many ta’ata into a modern nuclear-tourism future of individualism, wage labor, cash economies, consumer advertising, broadcast entertainment, artificial scarcity, and nuclear family subdivisions. Te popa’āsought to break the bond between te ta’ata and te fenua. They did not know, this bond cannot be broken. 

The popa’āproject of supremacist colonial modernization is ongoing. But so is the Mā’ohi project of knowing and growing with the land. 

Tahitian language glossary

fare house(s), building(s)

feafea (i) thinking (of, about)

fenua land(s), territory(ies), world(s)

fa’apū garden(s); place(s) for growing crops

nūna’a people, peoples, nation(s)

Mā’ohi Indigenous to French Polynesia

marae ceremonial pavilion(s)

miti salt water; sea(s)

o of

popa’ā the people who think they are white

te the, a, an, some

ta’ata person, people, human(s)

tumu tree(s); root(s)

va’a canoe(s); sailing canoe(s)

Photo: Maupiti lagoon. Text, photo and layout by Teo Akande Wickland. Made with Mā’ohi, Black American, Latinx, queer, feminist and modern/colonial knowledges.

Wickland, Teo Akande. "Feafea i te miti o te fenua ." In 4S Paraconference X EiJ: Building a Global Record, curated by Misria Shaik Ali, Kim Fortun, Phillip Baum and Prerna Srigyan. Annual Meeting of the Society of Social Studies of Science. Honolulu, Hawai'i, Nov 8-11, 2023

Chemicals of Concern

mtebbe
  • Flame retardant chemicals
    • Migrate off of products and into air/dust
    • Many are endocrine disruptors, interfere with the reproductive system and thyroid
  • Stain repellent chemicals
    • Polyfluorinated alkyl substances (PFASs) or polyfluorinated chemicals (PFCs)
    • Enter air, dust, and drinking water
    • 6 million US residents have blood PFAS concentrations over EPA limit
    • Associated with cancer, thyroid disease, immunotoxicity, reduced immune response to childhood immunizations
  • Phthalates
    • Enter air and dust
    • Associated with asthma and allergies
  • Polychlorinated Biphenyls (PCBs)
    • Environmentally persistent pollutant, endocrine disruptor, and probable carcinogen
    • No longer used, but remain in estimated 25,000 US schools
    • Prenatal exposure may affect height, weight, head circumference, and body size at puberty

Main Argument

mtebbe

The authors structure their argument around three metrics: student health, student thinking, and student performance. They define these as follows:

  • Student health: the overall physical and biological health of a school building occupant.
  • Student thinking: short-term impacts on cognitive function and mental well-being.
  • Student performance: the successful long-term academic performance of students.

Through their review of more than 200 studies, they conclude that there is unambiguous evidence for negative effects of low environmental quality on all three of these metrics. Although it is discussed in less detail, they also reference studies that provide evidence for the improvement of these three metrics when issues with school infrastructure are addressed.

Scale of the Issue Pt. 2

mtebbe

"Millions of K–12 students in America spend several hours a day learning in schools that are more than 50 years old and in need of extensive repair and where children may be exposed to mold, poor ventilation, uncomfortable temperatures, inadequate lighting, and overcrowded, excessively noisy conditions."

Emphasizes the scale of the issue--this is not a Philadelphia or Santa Ana or Azusa problem, it is a national issue for all public schools. Also emphasizes the breadth of the issues--there are so many different forms of environmental hazards in schools.

Unique Effects on Children's Health

mtebbe
  • Ventilation & air quality:
    • Children breathe more air than adults relative to their body size
  • Water quality:
    • Contaminants like lead have greater effects on cognitive development and behavior of children than adults
  • Thermal comfort
    • Current models for thermal comfort are based on adults and do not predict children's comfort levels
    • Children are more susceptible to the effects of heat stress
    • Children's clothing and activity levels (major determinants of thermal comfort) are distinct from adults
  • Lighting and views
    • Children have larger pupils than adults
    • Children have greater light-induced melatonin suppression--their Circadian rhythms are more susceptible to manipulation
  • Noise
    • Children under 15 are more sensitive to difficult listening conditions because they are still developing mature language skills
    • Children need a greater signal-to-noise ratio in order to understand language
    • Memory and attention development are sensitive to chronic noise exposure

External Factors

mtebbe

"We recognize that beyond the four walls of the school building there are many environmental and social contexts that can adversely affect students’ well-being and undermine their academic potential. Inequities persist in the distribution of the social determinants of health, and students bring these influence with them every day when they walk through the doors of their school building."

Environmental injustice can't be an either/or issue of hazards inside or outside schools, it needs to be a both/and issue where hazards in schools are being addressed in conjunction with hazards outside of schools.

Chronic Environmental Hazards

mtebbe

"The chronic impacts of a poor school environment often do not get the same type of attention as cases like these, because the links between building quality and health are subtler and less overt."

"These" is referring to a list of dramatic incidents where students were suddenly exposed to some kind of environmental hazard. This quote captures one of the biggest challenges of environmental justice work--in the many, many cases where it is not visible, it is hard to mobilize support, attention, and emotion because the links aren't flashy. This connects to ideas about slow disasters in Anthro 25A.

National Standards for Environmental Quality in Schools

mtebbe
  • Ventilation:
    • 15 cubic feet of outside air per person or 5 liters per person per second
    • Carbon dioxide concentrations below 1000 ppm
  • Water quality:
  • Thermal health
    • Indoor temperatures between 68 and 77 degrees Fahrenheit
  • Lighting
    • Minimum 350 lux, up to 1000 lux
    • LED instead of fluorescent lighting
  • Noise
    • Maximum background noise: 35 dB
    • Maximum reverbration time: 0.6-0.7 seconds

Scale of the Issue

mtebbe
  • Public schools are the second largest sector of US public infrastructure spending (after highways) - investment falls $46 billion short annually
  • 60,000 schools, or 46% of public schools, have significant environmental hazards
  • Students will spend 15,600 hours inside a school during K-12 education
  • Schools are four times as densely populated as offices
  • Childhood asthma accoutns for 13.8 million missed school days each year
  • 31% of schools use portable classrooms
  • Average school building in the US has a lifespan of 50 years, many are older than this

Missing Data and Regulation

mtebbe

"School facilities represent the second largest sector of U.S. public infrastructure spending after highways, and yet no comprehensive national data source exists on K–12 public school infrastructure. Even at the state level, school facilities information is often scant. The death of official data and standards for our nation’s public school infrastructure has left communities and states working largely on their own to plan for and provide high-quality facilities. According to the Healthy Schools Network (2015), the U.S. Department of Education has never had any in-house staff with expertise in school-facility management or child environmental health. Moreover, there is no federal regulatory agency with the authority to intervene in schools to address known environmental health hazards; Occupational Safety and Health Administration regulations and Centers for Disease Control and Prevention health hazard evaluations and guidance are designed to protect the health of adult employees, such as school teachers and staff, but no agency has the overarching responsibility to ensure that children’s health is safeguarded at school. This must change. A National School Infrastucture Assessment, and National Director of School Infrastructure, are needed."

This quote does a number of things. It draws attention to the critical lack of data, especially publicly-available data, on school facilities. Without this data, it is nearly impossible to know the scope of the problem, prioritize actions across and within districts, or make connections between districts dealing with similar issues. Collaboration will be critical to our response to the challenges presented by environmental hazards in order to make sure we are not duplicating efforts in different locations. It also draws attention to the fact that no government agency is directly responsible for the health of children in school buildings and proposes the creation of a government agency to solve this problem. This is an interesting solution and is one I have not seen proposed elsewhere.