Skip to main content

Analyze

Love Canal, USA

Misria

Residents of Love Canal, in the Niagara Falls region of Western New York, were alerted to signs of a toxic waste crisis involving the lethal chemical byproduct dioxin in the late 1970s. Residents learned about the crisis through news media, community activism and research, and their own visceral experiences – they could smell noxious fumes, noticed black sludge seeping into their basements, and saw children falling ill. Activists and academics carried out community-based research to survey the area in an effort to understand the extent of the hazard and its effects – data that they saw as missing, at the time – in turn generating evidence of changes in health and pregnancy abnormalities. In doing so, members of the community aimed to hold corporate and government stakeholders accountable to evacuate residents, organize remediation, and strengthen scientific studies and interventions to care for residents. Regional health authorities, however, dismissed community-based studies as “useless housewife data”. Activists responded by scrutinizing government and scientific studies, critiquing a lack of ecological validity and trustworthiness. Residents and community groups’ advocacy contributed to their exercise of epistemic authority, the creation of archival records and initiatives tracking the crisis over the last five decades, and wider public attention to Love Canal and other sites like it.

Image Description and Source: "Map showing distribution of symptoms believed to be caused by Love Canal pollutants," Digital Collections - University at Buffalo Libraries, May 1982.

Shankar, Saguna. 2023. "What's the Use of Data? Epistemic Authority and Environmental Injustice at Love Canal." In 4S Paraconference X EiJ: Building a Global Record, curated by Misria Shaik Ali. Kim Fortun, Phillio Baum and Prerna Srigyvan. Annual Meeting of the Society for Social Studies of Science. Honolulu, Hawaiti, Nov 8-11.

What quotes from this text are exemplary or particularly evocative?

Taina Miranda Araujo

“Also of note when interpreting our results is that this study did not take into consideration the ingestion of heavy metals through the dietary route. Had we considered this additional exposure pathway, our calculated chronic daily intake levels of heavy metals would have been greater, resulting in higher estimated risk (particularly for metals such as Pb, As, and Cd which have been widely documented in various foods)” (Marsi et al. 2021)

“Both cancer and non-cancer risk at the Census tract level exhibited positive correlations with indicators of social as well as physiological vulnerability” (Marsi et al. 2021)

 

Risk Assessment of Soil Heavy Metal Contamination Santa Ana CA (What does this text focus on?)

Taina Miranda Araujo

This study used a community-based participatory research approach to collect and analyze a large number of randomly sampled soil measurements to yield a high spatially resolved understanding of the distribution of heavy metals in the Santa Ana soil, in an effort to exposure misclassification. This study looks into average metal  concentrations at the Census tract level and by land use type, which helps map potential sources of heavy metals in the soil and better understand the association between socioeconomic status and soil contamination (Marsi et al. 2021). 

In 2018, soil samples of eight heavy metals including lead (Pb), arsenic (As), manganese (Mn), chromium (Cr), nickel (Ni), copper (Cu), cadmium (Cd), and zinc (Zn) were collected across Santa Ana. These were analyzed at a high resolution using XRF analysis. Then, metal concentrations were mapped out and American Community Survey data was used to assess the metals throughout Census tracts in terms of social and economic variables. Risk assessment was conducted to evaluate carcinogenic risk. The results of the concentrations of soil metals were categorized according to land-use type and socioeconomic factors. “Census tracts where the median household income was under $50 000 had 90%, 92.9%, 56.6%, and 54.3% higher Pb, Zn, Cd, and As concentrations compared to high-income counterparts” (Marsi et al. 2021). All Census tracts in Santa were above hazard inder >1, which implies non-carcinogenic effects, and almost all Census tracts showed a cancer risk above 104, which implies greater than acceptable risk. Risk was found to be driven by childhood exposure.

It was concluded that the issue of elevated soil contamination relates back to environmental justice due to overlap between contaminated areas and neighborhoods of lower socioeconomic status. Marsi et al. (2021) found there needs to be more community-driven recommendations for policies and other actions to address disproportionate solid contamination and prevent adverse health outcomes.      

 

Risk Assessment of Soil Heavy Metal Contamination Santa Ana CA (What is notable about the place or time of its publication?)

Taina Miranda Araujo

Published in May 2021, amid the coronavirus pandemic where in-person community workshops and meetings turned into weekly virtual meetings. 

-> Authors:

Shahir Masri: Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine; air pollution scientist.

Alana M. W. LeBrón: Department of Health, Society, and Behavior, University of California, Irvine; Assistant Professor, Chicano/Latino Studies; Interests: structural racism and health, health of Latina/o communities, community-based participatory research.

Michael D. Logue: Department of Chicano/Latino Studies, University of California, Irvine

Enrique Valencia: Orange County Environmental Justice, Santa Ana

Abel Ruiz: Jóvenes Cultivando Cambios, Santa Ana; CRECE Urban Farming Cooperative member

Abigail Reyes: Community Resilience, University of California, Irvine

Jun Wu: Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine

 

 

New York City's electricity patterns during COVID-19

Briana Leone

As outlined in this brief article by the U.S. Energy Information Administration, energy consumption by New York City alone has dropped significantly more than the surrounding areas. On a prima-facie observation, one could say the foregoing alleviates stress on the existing energy infrastructures. However, deeper analyses should consider the repercussions that demanding less energy may have on production, supply, and distribution, as well as transitions between larger and smaller electric microgrids. Given energy infrastructures in the United States are already vulnerable, can it be really said the pandemic alleviates stress on the existing energy infrastructures when everybody is connected to the internet and is generally using more technology at home?