Skip to main content

Analyze

How was research for this document conducted? Who participated?

margauxf

“Since asthma surveillance data were not available at the census tract level for most of Louisiana, we estimated asthma burden using the inpatient discharge data available through LDH.”  (4)

“Case counts are not provided for CTs with a 2018 population of less than 800 to safeguard privacy.” (4)

“To minimize the need for suppression, inpatient discharge data was aggregated for the three most recent years available (2017–2019) and average annual crude rates were calculated for cases where asthma (ICD-10 code J45) was the primary diagnosis, as well as where asthma was any diagnosis.” (4)

“Spearman’s Rank Correlation was utilized to analyze the correlation between various social and environmental vulnerability factors, COVID-19 incidence, and the measures of asthma risk by CT.” (4)

 

“This was performed by first ranking the values in each dataset using RANK.AVG function in MS Excel 2016, followed by applying the PEARSON function to compare two datasets. Significance was set at alpha less than 0.05 (α < 0.05), with degrees of freedom (df) equal to two less than the total number of data points represented in both datasets” (4)

The research team works for the Section of Environmental Epidemiology and Toxicology, Office of Public Health, Louisiana Department of Health in Baton Rouge. Team members included Arundhati Bakshi; Shanon Soileau; Collete Stewart; Kate Friedman; Collete Maser; Alexis Williams; Kathleen Aubin; and Alicia Van Doren. 

How are the links between environmental conditions and health articulated?

margauxf

“Currently, much of the environmental focus of the pandemic remains on PM2.5 levels; however, we noted that higher levels of ozone was consistently associated with higher incidence rates of COVID-19, and it was the only environmental factor that appeared to have an additive effect over SVI on COVID-19 incidence (Fig 1).” (11)

“Specifically, our data show a moderately strong positive correlation between SVI due to minority status/language barrier and three health data variables: asthma hospitalization; estimated asthma prevalence; and cumulative COVID-19 incidence at 3 months (Table 2). Interestingly, SVI measures were either negatively or not significantly correlated COVID-19 incidence at the 9-and 12-month time points, indicating that social vulnerability factors may have played a greater role in COVID-19 spread early in the pandemic, but may have been of diminishing importance as the pandemic wore on (Fig 1 and Table 2).” (9)

Bakshi A, Van Doren A, Maser C, Aubin K, Stewart C, Soileau S, et al. (2022) Identifying Louisiana communities at the crossroads of environmental and social vulnerability, COVID-19, and asthma. PLoS ONE 17(2): e0264336. https:// doi.org/10.1371/journal.pone.0264336. 

What forms of evidence and expertise are used in the document?

margauxf

This document uses data resources from the Center for Disease Control/Agency for Toxic Substances and Disease Registry (CDC/ATSDR), the Environmental Protection Agency (EPA), and the Louisiana Department of Health (LDH).

These data resources include the Social Vulnerability Index (2018 - CDC/ATSDR), the NATA Respiratory Hazard Index (EPA 2014), PM2.5level (average annual concentration in ug/m3, EPA 2016), ozone level (summer seasonal average of daily maximum 8-hour concentration in air in parts per billion, EPA 2016), indoor mold concerns reported to IEQES program (average annual number of calls, LDH 2017-2019), cumulative COVID-19 incidence rate at 3-, 6-, 9- and 12-month increments (LDH March 2020 - March 2021), asthma hospitalization (average annual crude rate, where asthma was a primary diagnosis among hospitalization cases, LDH 2017-2019), and estimated asthma prevalence (average annual crude rate, where asthma was any diagnosis among hospitalization cases, LDH 2017-2019).

10.What steps does a user need to take to produce analytically sharp or provocative data visualizations with this data resource?

margauxf

Creators of the Student Health Index recommend using the tool in combination with qualitative data collection and stakeholder/community engagement (e.g. working with school leaders, local community leaders, and healthcare providers).

A full guide to using the dashboard is available here.

 

8. How has this data resource been critiqued or acknowledged to be limited?

margauxf

Data sources utilized by the index are not always the most current due to data collection limitations (e.g. covid-19 has caused disruptions in the collection of CDE data).

The Index is limited in that it does not offer data for schools that were not large enough to warrant the construction of a School-based Health Center. Thus, schools that did not meet specific enrollment targets were excluded from the dashboard. This includes rural schools (designed as such by the USDA) with an enrollment under 500 students, urban schools (without a high school) with less than 500 students, and urban schools (with a high school) with less than 1000 students. California had more than 10,000 active public schools in 2020-21. The final dashboard for the Student Health Index includes 4,821 schools.

The lack of available data on health indicators at a school-level restricted the Student Health Index to using proxies for the health outcomes. Some health indicators are included, but they are not school-specific, instead linked to specific schools geographically through the census tract. However, community-level data does not always accurately reflect the characteristics of a school’s population. As a result, school-level indicators in the Index were weighted more heavily than community-level indicators.

Additionally, race was not included as a measure in the Student Health Index because of California’s Proposition 20, which prohibits the allocation of public resources based on race and ethnicity. However, the dataset does contain measures of non-white students at each school. 

The Index has also been limited as a quantitative measure of need, which may overlook the influence of other factors that might be better illuminated through qualitative evidence (e.g. stakeholder engagement, focus groups, interviews, etc.).

6. What visualizations can be produced with this data resource and what can they be used to demonstrate?

margauxf

The Student Health Index can produce visualizations that represent data on conditions, school characteristics and risk factors that affect education outcomes and could be improved through access to school-based health care. These visualizations can be used to demonstrate need for expanding school-based health care access in California.

In addition to maps, the index can also be used to generate graphs and visual displays of data (e.g. ratio of highest need schools to all schools, by county).

The visualizations can be used to demonstrate the correlations between final need scores and race, the impact of specific indicators in health, and the concentration of need to certain regions of California (hot spot analysis).

5. What can be demonstrated or interpreted with this data set?

margauxf

The Student Health Index enables users to identify where SBHCs will have the most impact for students. The index uses 12 indicators, each of which can be scored from 1 to 4 for any given school. These scores are generated using percentiles and represent relative values. The 12 indicator scores are combined into a Need Score, which is calculated using percentiles along a scale of 1 to 4. Schools with a score of 4 (in the 4th quartile) have the highest Need scores relative to other schools in California.

The index is composed of 12 diverse indicators (percentages, rates, and index values) that have been transformed using percentiles in order to enable comparisons on a common scale. These indicators are divided into 3 categories: health indicators, school-level indicators, and socioeconomic indicators.

 

Health Indicators

  1. Diabetes
  2. Asthma ED admissions
  3. Teen birth
  4. Health Professional Shortage Areas (HPSA)

 

Socioeconomic Indicators

  1. Poverty among individuals under 18
  2. Uninsured among under 19
  3. Healthy Places Index

 

School-Level Indicators

  1. Percent FRPL (students eligible for free or reduced-price meals)
  2. Percent English Learners
  3. Percent Chronically Absent
  4. Percent experiencing homelessness
  5. Suspension rate

 

Other Data

  1. Mental health hospitalization rate
  2. Percent in foster care

 

Indicator selection was guided by CDC estimations on the primary contributing factors that shape health (social determinants of health, medical care, and health behaviors). The indicators included in the index are all either directly associated with the absence of health services that could be provided at a school level, act as proxies for health behaviors, or represent social determinants of health that could be addressed through access to school-based health services.

Indicator selection was influenced by recommendations from the Research Initiative of the Campaign for Educational Equity at Columbia Teachers College, which found that seven health disparities affecting school-aged youth could be addressed through school health programs. These disparities include: (1) vision, (2) asthma, (3) teen pregnancy, (4) aggression and violence (including bullying), (5) physical activity, (6) hunger, and (7) inattention and hyperactivity.

More detailed description of the rationale shaping indicator selection is available here.