Skip to main content

Analyze

West Africa

Misria
Annotation of

At the height of the West African Ebola epidemic, West African governments and Mobile Network Operators (MNOs) were barraged with requests from international humanitarian and Western data analytics agencies to provide Call Detail Record data. This data could furnish the large-scale ambitions of data modelling to track and predict contagion. Despite its utility in tracking mobility and, as such, disease, CDR’s use raises many privacy concerns. In addition, embedded within a turn towards datafication, CDR technologies for surveillance embed specific ontologies of the data-focused society they emerge from. There is a false equivalence embedded in the relationship between humans and technology. The predominantly Western idea that one phone equals one person underlines the claim that CDR data accurately tracks distinct user movements, encoding a Western “phone self-subjectivity” (Erikson 2018). However, the refusal by some African actors to hand over sensitive mobile data to international agencies was met with forceful rhetoric of Africa’s moral obligation to comply—to forgo privacy rights in the name of ‘safety.’ The Ebola context reflects an emergent digitization of emergencies in the Global South, which is reshaping the way societies understand and manage emergencies, risk, data, and technology. The big data frenzy has seen a rising demand to test novel methods of epidemic/pandemic surveillance, prediction, and containment in some of the most vulnerable communities. These communities lack the regulatory and infrastructural capacity to mitigate harmful ramifications. With this emergence is a pivot towards 'humanitarian innovation,' where technological advancements and corporate industry collaboration are foregrounded as means to enhance aid delivery. In many ways, these narratives of innovation and scale replicate the language of Silicon Valley’s start-up culture. Surveillance of the poor and disempowered is carried out under the guise and rhetoric of care. In this scenario, market ideals and data technologies (re)construe social good as dependent on the “imposition of certain unfreedoms” as the cost of protection (Magalhaes and Couldry 2021). As big data technologies, they foreground a convergence of market logistics and global networks with existing and already problematic international humanitarian infrastructures (Madianou 2019). These convergences create new power arrangements that further perpetuate an unequal and complex dependency of developing countries on foreign organizations and corporations. Pushback against these data demands showcases competing notions of where risk truly lies. While resistance to data demands was at the state level, community responses to imposed epidemic regulations ranged from non-compliance to riots. These resistances demonstrated how the questions of ‘who and what is a threat?’ or ‘who and what is risky?’ and ‘to whom?’ experience shifting definitions in relation to these technologies as global, national, and community imaginaries are reinforced and reproduced as cultural, political, as well as biological units. 

Source

Akinwumi, Adjua. 2023. "Technological care vs Fugitive care: Exploring Power, Risk, and Resistance in AI and Big Data During the Ebola Epidemic." In 4S Paraconference X EiJ: Building a Global Record, curated by Misria Shaik Ali, Kim Fortun, Phillip Baum and Prerna Srigyan. Annual Meeting of the Society of Social Studies of Science.

West Africa

Misria
Annotation of

(MNOs) were barraged with requests from international humanitarian and Western data analytics agencies to provide Call Detail Record data. This data could furnish the large-scale ambitions of data modelling to track and predict contagion. Despite its utility in tracking mobility and, as such, disease, CDR’s use raises many privacy concerns. In addition, embedded within a turn towards datafication, CDR technologies for surveillance embed specific ontologies of the data-focused society they emerge from. There is a false equivalence embedded in the relationship between humans and technology. The predominantly Western idea that one phone equals one person underlines the claim that CDR data accurately tracks distinct user movements, encoding a Western “phone self-subjectivity” (Erikson 2018). However, the refusal by some African actors to hand over sensitive mobile data to international agencies was met with forceful rhetoric of Africa’s moral obligation to comply—to forgo privacy rights in the name of ‘safety.’ The Ebola context reflects an emergent digitization of emergencies in the Global South, which is reshaping the way societies understand and manage emergencies, risk, data, and technology. The big data frenzy has seen a rising demand to test novel methods of epidemic/pandemic surveillance, prediction, and containment in some of the most vulnerable communities. These communities lack the regulatory and infrastructural capacity to mitigate harmful ramifications. With this emergence is a pivot towards 'humanitarian innovation,' where technological advancements and corporate industry collaboration are foregrounded as means to enhance aid delivery. In many ways, these narratives of innovation and scale replicate the language of Silicon Valley’s start-up culture. Surveillance of the poor and disempowered is carried out under the guise and rhetoric of care. In this scenario, market ideals and data technologies (re)construe social good as dependent on the “imposition of certain unfreedoms” as the cost of protection (Magalhaes and Couldry 2021). As big data technologies, they foreground a convergence of market logistics and global networks with existing and already problematic international humanitarian infrastructures (Madianou 2019). These convergences create new power arrangements that further perpetuate an unequal and complex dependency of developing countries on foreign organizations and corporations. Pushback against these data demands showcases competing notions of where risk truly lies. While resistance to data demands was at the state level, community responses to imposed epidemic regulations ranged from non-compliance to riots. These resistances demonstrated how the questions of ‘who and what is a threat?’ or ‘who and what is risky?’ and ‘to whom?’ experience shifting definitions in relation to these technologies as global, national, and community imaginaries are reinforced and reproduced as cultural, political, as well as biological units. 

Akinwumi, Adjua. 2023. "Technological care vs Fugitive care: Exploring Power, Risk, and Resistance in AI and Big Data During the Ebola Epidemic." In 4S Paraconference X EiJ: Building a Global Record, curated by Misria Shaik Ali, Kim Fortun, Phillip Baum and Prerna Srigyan. Annual Meeting of the Society of Social Studies of Science. Honolulu, Hawai'i, Nov 8-11.

What quotes from this text are exemplary or particularly evocative?

margauxf

BIOETHNOGRAPHY: “Thus, instead of combining objects of inquiry (biology and culture), I conceived of bioethnography as combining two different methods for knowing the world (Mol 2002, 153)—ethnographic observation and biochemical sampling—in order to ask and answer research questions that could not be addressed through either method alone. This methodological focus involves exploring how our data collection and analysis might be shaped if we suspended the nature/culture binary” (Roberts, 2021, p. 2)

“bioethnography asks, what if we created numbers otherwise, upending the cooked data that reinforces inequality? In fact, bioethnography can enable us to identify structural forces, such as NAFTA and the global health apparatus itself, that are part of the bodily processes that make ill health. In other words, while we know that all data is cooked, it matters how it’s cooked.” (Roberts, 2021, p. 5)

What is the main argument, narrative and effect of this text? What evidence and examples support these?

margauxf

Roberts describes their ongoing bioethnographic collaboration with a team of exposure scientists who are working in environmental engineering and health. Though ethnography is not easily enumerated, Roberts emphasizes that integrating it with quantitative data is worthwhile and makes for “better numbers”. As an example, Roberts describes 3 bioethnographic projects on neighborhoods, water distribution, and employment and chemical exposures. These projects were part of a longitudinal birth-cohort study in Mexico City called Early Life Exposures in Mexico to ENvironmental Toxicants (ELEMENT), created to understand the effects of early-life nutrition and exposure to toxicants (such as lead and phenols). Overtime, this project was expanded to include the study of new toxins (e.g. BPAS, mercury, and fluoride) and new health concerns (e.g. obesity, meopause, sleep).

Roberts’ focus on neighborhoods was produced from the ethnographic observation that neighborhood characteristics might influence exposure levels. Following this observation, Roberts’ and ELEMENT researchers sorted participants by neighborhood and identified significant differences in blood-lead levels. Additionally, Roberts applied previous ethnographic observation and scholarship to argue that high levels of toxicants like lead correlate with the capacity of neighborhoods to withstand other dangers, such as police violence. These findings prompted the development of two new bioethnographic project centered on water and the effect of neighborhood dynamics on health.