Skip to main content

Analyze

environmental hazards

ghakim
  • includes severe water pollution -- tied to militarism, including raw sewage and petroleum contamination (incl. in Oahu's sole aquifer) - O'ahu Water Protectors, calls to shut down the Navy's Red Hill facility
  • (combo disaster) potential radioactive contamination and legacies of U.S. nuclear weapon testing -- "The Runit Dome is a relic of America’s atomic past. It’s home to 3 million cubic feet of radioactive waste that was buried there as part of the government’s effort to clean up the mess left from dozens of nuclear tests in the 1940s and ’50s that decimated the atoll. A warming climate and rising sea levels now threaten the integrity of the saucer-shaped structure, which, if it fails, could spill its radioactive contents into the Pacific, a scenario that would threaten both people and the surrounding environment." (source)
  • wildfires, compounded by climate change

intersecting factors

ghakim
  • settler colonialism - Haunani-Kay Trask's concept of "settlers of color" and "immigrant hegemony" (The Mauna Kea Syllabus), Kēhaulani Kauanui's article on enduring indigenity/asserting indigenity as a category of analysis
  • military-industrial complex + Hawaii as a linchpin of U.S. military interests - Ke'awalau o Pu'uloa (Pearl Harbor) alone has six superfund sites (Cultural Survival)
  • tourism - functioning hand in hand with militarism. From Vernadette Vicuña Gonzalez's book, Securing paradise : tourism and militarism in Hawai'i and the Philippines: "For instance, in both Hawai'i and the Philippines, U.S. military modes of mobility, control, and surveillance enable scenic tourist byways. Past and present U.S. military posts, such as the Clark and Subic Bases and the Pearl Harbor complex, have been reincarnated as destinations for tourists interested in World War II. The history of the U.S. military is foundational to tourist itineraries and imaginations in such sites. At the same time, U.S. military dominance is reinforced by the logics and practices of mobility and consumption underlying modern tourism. Working in tandem, militarism and tourism produce gendered structures of feeling and formations of knowledge. These become routinized into everyday life in Hawai'i and the Philippines, inculcating U.S. imperialism in the Pacific."

University of Hawai'i Resource

ghakim

The University of Hawai'i has this incredible resource of resistance movements from 1960-2010. The section on  militarization, for example, includes resources on issues such as the environmental degradation of Kaho'olawe (used as a target range by the U.S. Navy), evictions in the Mākua Valley, and the construction of the H-3 Highway (and how tourism and militarism function together). 

The Glass Plate

sgknowles

By Scott G. Knowles: As part of the STL Anthropocene Field Campus the research team visited the Wood Refinery Refinery History Museum on March 9, 2019. This museum is located on the grounds of the Wood River Refinery, a Shell Oil refinery built in 1917 and today owned by Phillips 66. The site is Roxana, Illinois, just upriver from Granite City, and just over two miles from the convergence of the Mississippi and Missouri Rivers. Sitting on the actual grounds of the refinery, the museum is an invitation to think across the micro, meso, and macro scales of the Quotidian Anthropocene, in terms of geography and also in terms of time. This refinery was built at the crux of the WWI, at a time when United States petrochemical production was entering an intensive phase of production, invention, corporate structuring, and global engagement. The museum is an invitation to think across temporal scales, backwards to the start of the refinery--through the individual lives of the workers and engineers whose lives defined the refinery--and forward to indeterminate points of future memory. This photo captures a key moment in an informal interview we did with one of the history guides. He had worked in the museum for decades before retiring. He explained to us that the museum sits in the former research facility of the refinery--and the glass plat he is showing reveals a beautiful artifact, a photograph made of the complex when it was built. Our guide only showed us this collection of slides after our conversation had advanced, perhaps after he was sure we were truly interested in his story, and the deeper history of the refinery. The pride in the place, the community of workers, and the teaching ability of the museum was manifest. The research team felt impressed, but also concerned about the health impacts (and naturally the environmental impacts as well) of the refinery. There was a mismatch in the scales--the memory of the individual tied to emotions of pride and knowledge of hard work done there--and the Anthropocene, global scale of petrochemicals. How do we resolve this mismatch? The glass plate is somehow a clue.

ghakim ecogovlab annotation 1

ghakim

I hope to create a community of people working on/driven by similar topics, similar goals and ways of seeing the world. For my dissertation project, to connect more to environmental injustice in wilmington and through this lab to also build long term relationships of collaboration and service with environmental groups + others in Southern California (I’m from Southern California but was never as engaged w/social justice here as i was when i lived in new york, something i’m looking to change). To connect with people across all stages of academia, and experience and be reminded of the reasons why i came to grad school. Also as a push to actually present and write/public my research

Fourth National Climate Assessment: Quotes on Texas

annika

“ After extensive hurricane damage fueled in part by a warmer atmosphere and warmer, higher seas, communities in Texas are considering ways to rebuild more resilient infra- structure. In the U.S. Caribbean, govern- ments are developing new frameworks for storm recovery based on lessons learned from the 2017 hurricane season.” (34)

“​​However, Harvey’s total rainfall was likely compounded by warmer surface water temperatures feeding the direct deep tropical trajectories historically associated with extreme precipitation in Texas, and these warmer temperatures are partly attributable to human-induced climate change. Initial analyses suggest that the human- influenced contribution to Harvey’s rainfall that occurred in the most affected areas was significantly greater than the 5% to 7% increase expected from the simple thermodynamic argument that warmer air can hold more water vapor. One study estimated total rainfall amount to be increased as a result of human-induced climate change by at least 19% with a best estimate of 38%, and another study found the three-day rainfall to be approximately 15% more intense and the event itself three times more likely.” (95)

“​​For example, in the Nebraska part of the northern High Plains, small water-table rises occurred in parts of this area, and the net depletion was negligible. In contrast, in the Texas part of the southern High Plains, development of groundwater resources was more extensive, and the depletion rate averaged 1.6 km3/year.” (160)

“In the Southeast (Atlantic and Gulf Coasts), power plants and oil refineries are especially vulnerable to flooding…Nationally, a sea level rise of 3.3 feet (1 m; at the high end of the very likely range under a lower scenario [RCP4.5] for 2100) (for more on RCPs, see the Scenario Products section in App. 3)47 could expose dozens of power plants that are currently out of reach to the risks of a 100-year flood (a flood having a 1% chance of occurring in a given year). This would put an additional cumulative total of 25 gigawatts (GW) of oper- ating or proposed power capacities at risk.48 In Florida and Delaware, sea level rise of 3.3 feet (1 m) would double the number of vulnerable plants (putting an additional 11 GW and 0.8 GW at risk in the two states, respectively); in Texas, vulnerable capacity would more than triple (with an additional 2.8 GW at risk).” (180)

“The Southern Great Plains, composed of Kansas, Oklahoma, and Texas, experiences weather that is dramatic and consequential. Hurricanes, flooding, severe storms with large hail and tornadoes, blizzards, ice storms, relentless winds, heat waves, and drought—its people and economies are often at the mercy of some of the most diverse and extreme weather hazards on the planet. These events cause significant stress to existing infrastructure and socioeconomic systems and can result in significant loss of life and the loss of billions of dollars in property.” (991)

“With the Gulf of Mexico to its southeast, the coastal Southern Great Plains is vulnerable to hurricanes and sea level rise. Relative sea level rise along the Texas Gulf Coast is twice as large as the global average, and an extreme storm surge in Galveston Bay would threaten much of the U.S. petroleum and natural gas refining capacity.” (992)

“The Southern Great Plains ranks near the top of states with structurally deficient or functionally obsolete bridges, while other bridges are nearing the end of their design life.16,17,18 Road surface degradation in Texas urban centers is linked to an extra $5.7 billion in vehicle operating costs annually (dollar year not reported).15 The region has tens of thousands of dams and levees; however, many are not subject to regular inspection and maintenance and have an average age exceeding 40 years.” (995)

“Along the Texas coastline, sea levels have risen 5–17 inches over the last 100 years, depending on local topography and subsidence (sinking of land).25 Sea level rise along the western Gulf of Mexico during the remainder of the 21st century is likely to be greater than the projected global average of 1–4 feet or more.26 Such a change, along with the related retreat of the Gulf coastline,27 will exacerbate risks and impacts from storm surges.” (996)

“Superimposed on the existing complexities at the intersection of food, energy, and water is the specter of climate change. During 2010–2015, the multiyear regional drought severely affected both agricultural and aquatic ecosystems. One prominent impact was a reduction of irrigation water released for the Texas Rice Belt farmers on the Texas coastal plains, as well as a reduction in the amount of water available to meet instream flow needs in the Colorado River and freshwater inflow needs to Matagorda Bay.” (997)

“The 2017 Texas State Water Plan52 indicates that the growing Texas population will result in a 17% increase in water demand in the state over the next 50 years. This increase is project- ed to be primarily associated with municipal use, manufacturing, and power generation, owing to the projections of population increase in the region.”  (1001)

[See Edwards Aquifer case study on pg. 1002.]

“Between 1982 and 2012, 82 dams failed in Texas, and during 2015 the high-hazard Lew- isville Dam was of concern due to observed seepage.” (1005)

“Within Texas alone, 1,000 square miles of land is within 5 feet of the high tide line, including $9.6 billion in current assessed property value and homes to about 45,000 people. Sensitive assets include 1,600 miles of roadway, several hospitals and schools, 4 power plants, and 254 EPA-listed contamination sites (hazardous waste and sewage).100 Up to $20.9 billion in coastal prop- erty is projected to be flooded at high tide by 2030, and by 2050, property values below the high-water mark are projected to be in excess of $30 billion, assuming current trends of greenhouse gas emissions.” (1005)

“Saltwater intrusion of aquifers has been observed in the Gulf Coast Aquifer, the second most utilized aquifer in Texas, which supports 8 million people. Although this was in part associated with heavy pumping, the Gulf Coast Aquifer remains vulnerable to further saltwater intrusion resulting from SLR and storm surge exacerbated by climate change.” (1006)

Fourth National Climate Assessment: Quotes on Louisiana

annika

“In August 2016, a historic flood resulting from 20 to 30 inches of rainfall over several days devastated a large area of southern Louisiana, causing over $10 billion in damages and 13 deaths. More than 30,000 people were rescued from floodwaters that damaged or destroyed more than 50,000 homes, 100,000 vehicles, and 20,000 businesses. In June 2016, torrential rainfall caused destructive flooding throughout many West Virginia towns, damaging thousands of homes and businesses and causing considerable loss of life. More than 1,500 roads and bridges were damaged or destroyed. The 2015–2016 El Niño poured 11 days of record-setting rainfall on Hawai‘i, causing severe urban flooding.” (67)

“Increases in baseline sea levels expose many more Gulf Coast refineries to flooding risk during extreme weather events. For example, given a Category 1 hurricane, a sea level rise of less than 1.6 feet (0.5 m)47 doubles the number of refineries in Texas and Louisiana vulnerable to flooding by 2100 under the lower scenario (RCP4.5).” (181)

“Many urban locations have experienced disruptive extreme events that have impacted the transportation network and led to societal and economic consequences. Louisiana experienced historic floods in 2016 that disrupted all modes of transportation and caused adverse impacts on major industries and businesses due to the halt of freight movement and employees’ inability to get to work. The 2016 floods that affected Texas from March to June resulted in major business disruption due to the loss of a major transportation corridor.147 In 2017, Hurricane Harvey affected population and freight mobility in Houston, Texas, when 23 ports were closed and over 700 roads were deemed impassable.” (498)

“​​Communities in Louisiana and New Jersey, for example, are already experiencing a host of negative environmental exposures coupled with extreme coastal and inland flooding.” (548)

“An example of the effects of rising sea levels can be found in Louisiana, which faces some of the highest land loss rates in the world. The ecosystems of the Mississippi River Delta provide at least $12–$47 billion (in 2017 dollars) in benefits to people each year.155 These benefits include hurricane storm protection, water supply, furs, habitat, climate stability, and waste treatment. However, between 1932 and 2016, Louisiana lost 2,006 square miles of land area (see Case Study “A Lesson Learned for Community Resettlement”),211 due in part to high rates of relative sea level rise” (775)

“The flood events in Baton Rouge, Louisiana, in 2016 and in South Carolina in 2015 provide real examples of how vulnerable inland and coastal communities are to extreme rainfall events.” (785)

“Hurricane Harvey was a Category 4 hurricane on the Saffir–Simpson scale when it made landfall on the central Texas coast near Rockport late in the evening of August 25, 2017. It then moved inland, stalled, and eventually moved back over the coastal Gulf of Mexico waters before making landfall a final time as a tropical storm several days later in southwestern Louisiana.” (992)

“The State of Louisiana’s Coastal Protection and Restoration Authority’s 2017 Coastal Master Plan has more than 100 struc- tural and coastal restoration projects designed to provide benefits over the next decade and up to 50 years into the future.” (1320)

“Louisiana’s Comprehensive Master Plan for a Sustainable Coast has five broad objectives: reduce economic losses from flooding, promote sustainable coastal ecosystems, provide coastal habitats that support commerce and recreation, sustain the region’s unique cultural heritage, and contribute to the regional and national economy by promoting a viable working coast. The plan contains actions  that advance all five objectives, reflecting a set of tradeoffs broadly acceptable to diverse communities in the face of hazards, including coastal subsidence (sinking land) and sea level rise.” (1323)

Fourth National Climate Assessment: Climate of Texas Overview

annika

Ch. 23, Southern Great Plains (Texas): This chapter provides five (four listed below) key messages about the climate of and climate change in the southern great plains region:

  1. Food, energy, water resources - Changes in water supply due to climate change are intersecting with changes in water demand due to food, water, and energy consumption. 

  2. Infrastructure - the built environment is vulnerable to climate change. Along the gulf coast of Texas, sea level rise in the coming years is a major concern. 

  3. Ecosystems and ecosystem services - aquatic ecosystems are impacted by extreme weather events. Not all aquatic species can adapt. 

  4. Human health - Increased temperatures that cause disease transmission and an increase in extreme events that cause injury and displacement are projected in the coming years. 

Fourth National Climate Assessment: Climate of Louisiana Overview

annika

Ch. 19, Southeast (Louisiana): This chapter provides four (two listed below) key messages about the climate of and climate change in the southeastern U.S.:

  1. Urban infrastructure and health risks - Cities in the southeast are particularly vulnerable to heat, flooding, and disease risk due to climate change. 

  2. Increasing flood risks in coastal and low-lying regions - Low lying regions are susceptible to flooding due to extreme rainfall and sea level rise.

Human Ecology of Climate Change Hazards in Vietnam: Overview

annika

This book provides a comprehensive overview of the climate hazards facing Vietnam. Chapter 3 in particular details the effects of climate change on the coast of Vietnam, which is relevant to the Vietnam case study and can serve as a reference for coastal climate hazards that intersect with local industrial hazards. The text notes the effects of the region’s topology—mountainous, with a long coastline—on the types of climate hazards experienced in the country in recent decades. The text describes 6 coastal provinces in North Central Vietnam and 15 provinces in the Northern mountainous region (37). Coastal precipitation, storms, flash floods, droughts, coastal erosion, and landslides affect the agriculture, aquaculture, forestry, industry, and tourism sectors, along with the dense local population. Most of the coast is expected (via climate modeling for different RCPs) to see an increase in rainfall this century. Section 2.1.3: Natural Hazards and Section 2.1.4: Climate Change Vulnerability are quoted extensively below.