The difference between the ocean perspective and the land perspective
abuschengWhat do you think is the biggest difference between the ocean perspective and the land perspective?
What do you think is the biggest difference between the ocean perspective and the land perspective?
CIEL's report is the first I have encountered to attempt to give a comprehensive analysis of Formosa Plastics and its impact on communities. The report breaks down the corporation's story into several sections: its origins and convoluted corporate structure, its primary products and common health risks of production, documented legal violations, and environmental justice threats. Together, the 100-page document covers significant ground, yet is readable in under an hour. It includes key statistics that are understandable without extensive background. I believe this report, as a mode of communication, finds an outstanding balance between accessible language, analysis, brevity, and detail. Activists and researchers alike should strive for the same qualities in their knowledge-sharing strategies.
Given the vastness of Formosa Plastics' influence, there are many ways to tell its story to the world. As environmental justice activists and researchers, how do we describe a company and its negative impact when there is so much to say? Limited by time, word count, and the audience's attention span, we must decide what goes unsaid. As a result, we could write countless answers to the same question, "What is Formosa Plastics?"
In this published academic case study, I introduce Formosa Plastics through a local lens--specifically, through the eyes of a grandmother-turned-activist in the small town of Welcome, Louisiana. Her family's history with social justice activism, as well as the area's connection to centuries of slavery, make the environmental racism of Formosa Plastics' Sunshine Project especially salient. Although Formosa Plastics is a global force, telling its story on the microscale is an equally important perspective. After all, in Sharon Lavigne's eyes, her small town is her world. How many of these little worlds have Formosa Plastics destroyed as they wreak havoc across international borders?
I published this news article about a hunger strike against Formosa Plastics that occurred in Texas this fall. Despite the extremity of a 30-day hunger strike, the protesting tactic has not gained attention from national media outlets. At the time I published this article, two small environmental organizations had announced the beginning of the strike, but none continued to cover the event in the unfolding weeks. While activists are driven to take on dangerous protest tactics, little communication of these tactics has carried across mass media.
The article itself introduces Formosa Plastics through its reputation as a "serial offender" of environmental and workplace safety regulations. I list several statistics on legal fines that Formosa Plastics has accumulated overtime, using these quantities to demonstrate the scale of their harm to environmental and human health. An important limitation of this storytelling strategy, however, is that many of Formosa Plastics' actions go undocumented, and even when documented, do not lead to legal consequences. Furthermore, we should still strive to acknowledge the harms committed by Formosa Plastics that are technically within legal limits.
From discussions of how to best document virtual strikers, organizers concluded participants should submit images of themselves holding signs of their commitment to fasting for a day with Diane Wilson. The series of images, showing many people from different countries, could create a sense of solidarity despite physical distance. In addition, images can serve as a tool against FPG demonstrating that many people disapprove of the corporation's actions, despite not being present at the in-person rally. Can images, however, form the same level of solidarity or connection that an in-person interaction otherwise would?
During my thesis project, Tim has served as a collaborator and mentor while he studied data use among activists opposing Formosa Plastics Group (FPG). In addition to connecting me with activists and interview candidates, he also introduced me to a small network of American and Taiwanese students in Taiwan and the United States studying FPG. This community can share resources and knowledge to further our individual studies. Could this academic network serve as a parallel to the transnational activist alliances I am studying? Are the strengths and barriers of research alliances reminiscent of the strengths and barriers of activist alliances?
Linking messages of community pride with political opposition to intrusion by petrochemical companies has interesting implications for collaborations across communities. Does this message enable partnerships in other regions and nations, and what is its relationship to the not-in-my-backyard/NIMBY mentality? How may it be interpreted in differing cultural and language contexts?
I situate my research at the crossroads of history, philosophy, sociology and anthropology of science. In the past, I have focused on epigenetics, environmental research, empirical bioethics and environmental justice, within and outside the academia, as you can read here, or here. Now I am focusing on antibiotic resistance, and I use it as a lens to interpret the contradictions of the last century derived by industrial production, environmental degradation and biomedical cultures.
What interests me is the (at that time) new epistemic discourse that since the Forties has been produced to explain morphological changes of organisms produce when they experience new environmental conditions or perturbations. Through an important experiment at the base of the so-called concept of genetic assimilation, Conrad H. Waddington showed that a thermic shock can produce changes in wings’ veins of fruit flies, changes that can eventually be inherited across generations, without the environmental trigger that caused them.
This focus on production and (genetic) storage of biological differences elicited by the environment is nowadays coupled with the knowledge produced through microbiome research that explains the phenotypic patterns that recur across generations.
In a thought-provoking twist, with microbiome research, the focus shifts from production and inheritance of biological differences to production and inheritance of biological similarities. Microbiome research shows that some phenotypic patterns are allowed by ecological communities of microorganisms composing all animals. Bacteria allow the development and functioning of our bodies within an epistemic framework that is now key to understand biology. The network of vessels composing mammals’ stomach is formed through cellular differentiation and expression of genes coordinated by bacteria. The same is true for our immune system that is coordinated by gut bacteria. Food, which is an important aspect of our lives also impacts on this microecology and mediates between our biological functions and functioning of means of production whose parts dedicated to food production have immense importance for our biology and our internal and external ecologies. Antibiotic resistance is one of the crossroads where culture, biology, history and the Anthropocene meet. Indeed, Antibiotic resistance shows that means of production of our societies have an even more widespread, deep and allegedly unexpected impact on the biology of animals and plants. The microorganism can indeed adapt to resist the selective toxicity of antibiotics. Moreover, bacteria can transfer their genetic code horizontally, by touch, so that we can acquire antibiotic resistance by eating food that functions as a vector, by hosting lice on our heads and many other contacts. Bacteria that are resistant to antibiotics that have been used as growth factors in animal husbandry and to prevent diseases in livestock and aquaculture, spread in natural ecosystems and can be found in wild species. Rivers and estuarine waters are places hosting antibiotic resistance.
Searching on PubMed (the search engine for biomedical literature) titles of articles containing the terms ‘antimicrobial’ and ‘Louisiana’ I retrieved just one twelve-years-old article. No results with terms such as 'Mississippi' or 'New Orleans'. The authors collected and analysed Oysters from both waters of Louisiana Gulf and in restaurants and food retailers in Baton Rouge. In most of the samples gathered, scientists recognised the presence of bacteria (Vibrio parahaemolyticus and Vibrio vulnificus) resistant to specific antimicrobials. Food production is indeed the first factor in terms of the quantity of antibiotics used. This use and related antibiotic resistance impact all the living beings present in a specific area, and can easily travel around the globe through many channels. As Littman & Viens have highlighted, a sustainable future is a future without antibiotics as “there may be no truly sustainable way of using antibiotics in the long-run, as microorganisms have shown to be almost infinitely adaptable since the first introduction of antibiotics” (Littman & Viens 2015). But in the meanwhile, we need to use them and antibiotic resistance is a phenomenon that can be better studied through environmental research, by analysing wild species and emissions nearby livestock, for instance.
The study that I retrieved focuses on Oysters. But what about antibiotic resistance conveyed through food that is consumed by the most?
What about exposures of communities that are living in highly polluted areas?
And what is the additive value on antibiotic resistance for individuals who experience the presence of industrial pollutants and that live in areas where cancer epidemics are registered?
In this respect, there is a strategy to cope with the issue of antibiotic resistance promoted by the Center for Disease Control and Prevention. The document doesn’t mention any action to monitor and regulate the production and usage of antibiotics in livestock. Nevertheless, the CDC wants to scrutinise, through genome sequencing, “Listeria, Salmonella, Campylobacter, and E. coli and uploads sequence data into PulseNet for nationwide monitoring of outbreaks and trends.” Moreover, the document reports that “In Fiscal Year 2019, Louisiana will begin simultaneously monitoring these isolates for resistance genes. When outbreaks are detected, local CDC-supported epidemiologists investigate the cases to stop spread.”
The questions that I would like to ask (to local ppl, activists, researchers, practitioners..) are:
What could be the epidemiologic characteristics (socioeconomic status, gender, residence..) of the populations more vulnerable to antibiotic resistance?
What is the additive role of antibiotic resistance for people living in highly polluted areas?
What is the impact of antibiotic resistance for people and patients living in areas where cancer incidence is high?
And on the long run I am interested in imagining possible strategies to not only living with the problem but also to tackle the problem itself, which means to develop strategies to answer the questions:
Why antibiotic resistance, which is known since a century, it’s a problem on the rise?
What is the role and interest of capitalism, in terms of profit-making of corporations, knowledge production and environmental degradation, in not being able to resolve antibiotic resistance?
What can be strategies of local communities to tackle the problem and to promote environmental justice in terms of alliances with ecologists, doctors, epidemiologists and other activists?