Skip to main content

Analyze

Carbon Capture at Yunlin Mailiao port

rexsimmons

Slides 37-55 outline FPG's current carbon capture system in Kaoshiung and its future plans for CCS systems in Mailiao, including an experimental system of biodegradable carbon capture. These initiatives, largely through Formosa Smart Energy Corp. also attempt to use AI models to regulate carbon capture for optimal production. 

 

See slides 40-42 for new initiatives on carbon capture. They list plans to build deep water carbon capture pits, being sited in Yunlin as of 9.2022.




The carbon capture system they have in place at Nanya seems to have reduced the amount of naptha necessary to manufacture butyl ether, a chemical used in solvents and pesticides, through reinjection of that carbon dioxide into source feedstocks (Enhanced Oil Recovery).

 

“國際碳捕捉技術發展

依據全球碳捕捉與封存研究所(Global CCS Institute, CCSI)最新發布之「2022年全球碳捕捉與

封存發展現況報告(The Global Status Of CCS 2022)」,⾄2022年全球共有30個⼤型CCS綜合

專案已經營運,其中有22個採⾏強制採油技術(Enhanced oil recovery, EOR),利⽤⼆氧化碳灌

注⾄快枯竭的油氣⽥,獲取更多殘存油氣,以增加效益,其餘8個專案封存於陸地或海洋深層

鹽⽔層,顯示現階段應⽤仍以EOR技術為主,除可減少碳排外,更可增加獲利。

 

自動翻譯

 Capture Technology Development

According to the "2022 Global Carbon Capture and Storage Storage Development Status Report“ (The Global Status Of CCS 2022), by 2022 there will be 30 large CCS comprehensive

The projects are already in operation, and 22 of them adopt enhanced oil recovery (EOR), using carbon dioxide irrigation. Inject into the depleted oil and gas to obtain more residual oil and gas to increase efficiency, and the remaining 8 projects are sealed in land or deep ocean

The salt water layer shows that the current application is still dominated by EOR technology, which can not only reduce carbon emissions, but also increase profits.” (Slide 38)

 

Heavy reliance on technosolutions to reach emission reduction and climate goals. Shift from oil as fuel to oil as material. Cooperation between industry, academic, and technical research organizations to research new carbon capture systems. Longevity of the petrochemical industry within climate politics is a high priority for FPG, but also the efficiency of petrochemical inputs. Climate change action is being pursued, but more so in capture of carbon emitted and repurposed within chemical reactions, as opposed to omitted through reductions in production

 

EiJ Ethylene Oxide News and Public Commentary

Lauren

Most recent news (As of September 2022) focuses on the EPAs naming of 23 EtO sterilization plants as high risk. This announcement enables local leadership, environmental organizations and legal partners to assess human health risks while focusing on reducing EtO emissions, as outlined by the EPA. Most recent news (As of September 2022) focuses on the EPAs naming of 23 EtO sterilization plants as high risk. This announcement has enabled local leadership, environmental organizations and legal partners to assess human health risks while focusing on reducing EtO emissions, as outlined by the EPA. This release by the EPA has prompted activism in the communities affected by EtO sterilization facilities. As noted by EarthJustice on the news, “Raul Garcia, legislative director for Healthy Communities at Earthjustice: ‘This is an important and welcome step to increasing transparency on the toxic air pollution and health threats that sterilizer facilities pose to the health of millions of Americans. Now that EPA has new information on precisely where the worst health threats are, the agency must use its full authority to ensure public health so no one gets cancer from this pollution and require fenceline monitoring at these facilities. Now, EPA must issue a strong new rule that phases out the use of ethylene oxide at commercial sterilizers. No one should get cancer from facilities that are used to sterilize equipment in the treatment of cancer.’ “. In addition, one major article edited and published by ProPublica sparked both outrage but in addition, change. The article The Most Detailed Map of Cancer-Causing Industrial Air Pollution in the U.S. details 

EiJ Ethylene Oxide Laws and Policies

Lauren

The main concern with EtO exposure includes inhalation. Laws that regulate air emissions have invariably affected and regulated this hazard. But specifically, below is a rough outline of  laws that directly impacted the air emissions of facilities processing EtO: 

  • Clean Air Act Section 112, Hazardous Air Pollutants. The CAA regulates Ethylene Oxide under section 112 of the CAA. The CAA labels EtO as a hazardous air pollutant. Under the CAA, EtO emissions can be regulated in conjunction with promoting the best emission controls.

  • Regulations on Sterilization Facilities (From Federal Register : National Emission Standards for Hazardous Air Pollutants: Ethylene Oxide Commercial Sterilization and Fumigation Operations) 

Note, fugitive emissions have not been standardized by the EPA, including back vents, emergency ventilation etc.

EiJ Ethylene Oxide Data Divergence

Lauren

Mainly stark contrast can be found between the EPA and various state and chemical manufacturing companies in terms of data divergence. The main concern surrounding EtO is the elevated cancer risk that occurs with long exposure both direct and indirect. The ways in which the EPA and other companies and agencies assess risk have been different in terms of unit quantity. The EPA utilized in 2016 the Integrated Risk Information System to model cancer risk. According to the American Chemical Council the, “ACC believes the value is significantly flawed.” Also, the Texas Commision on Environmental Quality has stated, “ ‘the US EPA unit risk factor (URF) for ethylene oxide is not scientifically justified.’ ”. This has led the TCEQ to raise its exposure limit from 1 ppb to 2.4 ppb.

EiJ Ethylene Oxide Data Resources

Lauren
  • Results of the Risk Assessment of Ethylene Oxide Emitting Facilities in Texas and Louisiana

Provides a list of 8 high risk EtO facilities both in LA and TX. Provides a breakdown of race in terms of proximity to facility and risk level. *One point to mention, is that data from the 2018 National Emissions Inventory (NEI), which was used, is provided to the EPA by the LDEQ and TCEQ.*

  • Ethylene Oxide Risk Map - Air Alliance Houston

Mapped by the Environmental Advocacy group Air Alliance Houston are EtO facilities across America. The top 25 EtO emitting facilities are labeled and census tracts with a cancer risk greater than 100 in 1 million are also highlighted.

 

EiJ Ethylene Oxide Health and Environment

Lauren

In the period between 1982 to 1984 multiple studies on lab rats concluded that inhalation concentrations of ethylene oxide could be correlated to cancer development. An analysis of the results found that increased exposure showed higher incidences of tumor development in both male and female lab rats. According to the EPA EtO is carcinogenic and, “Scientific evidence in humans indicates that exposure to EtO for many years increases the risk of cancers of the white blood cells, including non-Hodgkin lymphoma, myeloma, and lymphocytic leukemia. Studies also show that long-term exposure to EtO increases the risk of breast cancer in women.” 

EiJ Ethylene Oxide Locations

Lauren

Ethylene oxide mainly becomes an environmental and health hazard in any community when it is released as a gas into the surrounding air. Ethylene oxide exposure includes inhalation and ingestion. 

The map above constructed by air alliance Houston (Generated April 6, 2020) shows areas with EtO Cancer risk greater than 100/1 million as stars, top 25 EtO emitting facilities from 2008-2018 as red dots and other EtO facilities as black dots. Ethylene oxide facilities span the country mainly located on the east coast and gulf coast. 

In a close up we can see Huntsman Petrochemical highlighted within the elevated EtO cancer risk.