Skip to main content

Analyze

Carbon Capture at Yunlin Mailiao port

rexsimmons

Slides 37-55 outline FPG's current carbon capture system in Kaoshiung and its future plans for CCS systems in Mailiao, including an experimental system of biodegradable carbon capture. These initiatives, largely through Formosa Smart Energy Corp. also attempt to use AI models to regulate carbon capture for optimal production. 

 

See slides 40-42 for new initiatives on carbon capture. They list plans to build deep water carbon capture pits, being sited in Yunlin as of 9.2022.




The carbon capture system they have in place at Nanya seems to have reduced the amount of naptha necessary to manufacture butyl ether, a chemical used in solvents and pesticides, through reinjection of that carbon dioxide into source feedstocks (Enhanced Oil Recovery).

 

“國際碳捕捉技術發展

依據全球碳捕捉與封存研究所(Global CCS Institute, CCSI)最新發布之「2022年全球碳捕捉與

封存發展現況報告(The Global Status Of CCS 2022)」,⾄2022年全球共有30個⼤型CCS綜合

專案已經營運,其中有22個採⾏強制採油技術(Enhanced oil recovery, EOR),利⽤⼆氧化碳灌

注⾄快枯竭的油氣⽥,獲取更多殘存油氣,以增加效益,其餘8個專案封存於陸地或海洋深層

鹽⽔層,顯示現階段應⽤仍以EOR技術為主,除可減少碳排外,更可增加獲利。

 

自動翻譯

 Capture Technology Development

According to the "2022 Global Carbon Capture and Storage Storage Development Status Report“ (The Global Status Of CCS 2022), by 2022 there will be 30 large CCS comprehensive

The projects are already in operation, and 22 of them adopt enhanced oil recovery (EOR), using carbon dioxide irrigation. Inject into the depleted oil and gas to obtain more residual oil and gas to increase efficiency, and the remaining 8 projects are sealed in land or deep ocean

The salt water layer shows that the current application is still dominated by EOR technology, which can not only reduce carbon emissions, but also increase profits.” (Slide 38)

 

Heavy reliance on technosolutions to reach emission reduction and climate goals. Shift from oil as fuel to oil as material. Cooperation between industry, academic, and technical research organizations to research new carbon capture systems. Longevity of the petrochemical industry within climate politics is a high priority for FPG, but also the efficiency of petrochemical inputs. Climate change action is being pursued, but more so in capture of carbon emitted and repurposed within chemical reactions, as opposed to omitted through reductions in production

 

"Antibiotic Resistance in Louisiana"

fdabramo

I situate my research at the crossroads of history, philosophy, sociology and anthropology of science. In the past, I have focused on epigenetics, environmental research, empirical bioethics and environmental justice, within and outside the academia, as you can read here, or here. Now I am focusing on antibiotic resistance, and I use it as a lens to interpret the contradictions of the last century derived by industrial production, environmental degradation and biomedical cultures.

What interests me is the (at that time) new epistemic discourse that since the Forties has been produced to explain morphological changes of organisms produce when they experience new environmental conditions or perturbations. Through an important experiment at the base of the so-called concept of genetic assimilation, Conrad H. Waddington showed that a thermic shock can produce changes in wings’ veins of fruit flies, changes that can eventually be inherited across generations, without the environmental trigger that caused them.

This focus on production and (genetic) storage of biological differences elicited by the environment is nowadays coupled with the knowledge produced through microbiome research that explains the phenotypic patterns that recur across generations.

In a thought-provoking twist, with microbiome research, the focus shifts from production and inheritance of biological differences to production and inheritance of biological similarities. Microbiome research shows that some phenotypic patterns are allowed by ecological communities of microorganisms composing all animals. Bacteria allow the development and functioning of our bodies within an epistemic framework that is now key to understand biology. The network of vessels composing mammals’ stomach is formed through cellular differentiation and expression of genes coordinated by bacteria. The same is true for our immune system that is coordinated by gut bacteria. Food, which is an important aspect of our lives also impacts on this microecology and mediates between our biological functions and functioning of means of production whose parts dedicated to food production have immense importance for our biology and our internal and external ecologies. Antibiotic resistance is one of the crossroads where culture, biology, history and the Anthropocene meet. Indeed, Antibiotic resistance shows that means of production of our societies have an even more widespread, deep and allegedly unexpected impact on the biology of animals and plants. The microorganism can indeed adapt to resist the selective toxicity of antibiotics. Moreover, bacteria can transfer their genetic code horizontally, by touch, so that we can acquire antibiotic resistance by eating food that functions as a vector, by hosting lice on our heads and many other contacts. Bacteria that are resistant to antibiotics that have been used as growth factors in animal husbandry and to prevent diseases in livestock and aquaculture, spread in natural ecosystems and can be found in wild species. Rivers and estuarine waters are places hosting antibiotic resistance.

Searching on PubMed (the search engine for biomedical literature) titles of articles containing the terms ‘antimicrobial’ and ‘Louisiana’ I retrieved just one twelve-years-old article. No results with terms such as 'Mississippi' or 'New Orleans'. The authors collected and analysed Oysters from both waters of Louisiana Gulf and in restaurants and food retailers in Baton Rouge. In most of the samples gathered, scientists recognised the presence of bacteria (Vibrio parahaemolyticus and Vibrio vulnificus) resistant to specific antimicrobials. Food production is indeed the first factor in terms of the quantity of antibiotics used. This use and related antibiotic resistance impact all the living beings present in a specific area, and can easily travel around the globe through many channels. As Littman & Viens have highlighted, a sustainable future is a future without antibiotics as “there may be no truly sustainable way of using antibiotics in the long-run, as microorganisms have shown to be almost infinitely adaptable since the first introduction of antibiotics” (Littman & Viens 2015). But in the meanwhile, we need to use them and antibiotic resistance is a phenomenon that can be better studied through environmental research, by analysing wild species and emissions nearby livestock, for instance.

The study that I retrieved focuses on Oysters. But what about antibiotic resistance conveyed through food that is consumed by the most?

What about exposures of communities that are living in highly polluted areas?

And what is the additive value on antibiotic resistance for individuals who experience the presence of industrial pollutants and that live in areas where cancer epidemics are registered?

In this respect, there is a strategy to cope with the issue of antibiotic resistance promoted by the Center for Disease Control and Prevention. The document doesn’t mention any action to monitor and regulate the production and usage of antibiotics in livestock. Nevertheless, the CDC wants to scrutinise, through genome sequencing, “Listeria, Salmonella, Campylobacter, and E. coli and uploads sequence data into PulseNet for nationwide monitoring of outbreaks and trends.” Moreover, the document reports that “In Fiscal Year 2019, Louisiana will begin simultaneously monitoring these isolates for resistance genes. When outbreaks are detected, local CDC-supported epidemiologists investigate the cases to stop spread.”

The questions that I would like to ask (to local ppl, activists, researchers, practitioners..) are:

What could be the epidemiologic characteristics (socioeconomic status, gender, residence..) of the populations more vulnerable to antibiotic resistance?

What is the additive role of antibiotic resistance for people living in highly polluted areas?

What is the impact of antibiotic resistance for people and patients living in areas where cancer incidence is high?

 

And on the long run I am interested in imagining possible strategies to not only living with the problem but also to tackle the problem itself, which means to develop strategies to answer the questions:

Why antibiotic resistance, which is known since a century, it’s a problem on the rise?

What is the role and interest of capitalism, in terms of profit-making of corporations, knowledge production and environmental degradation, in not being able to resolve antibiotic resistance?

What can be strategies of local communities to tackle the problem and to promote environmental justice in terms of alliances with ecologists, doctors, epidemiologists and other activists?

pece_annotation_1524009929

ArielMejiaNJIT

This article brings Newark’s water contamination problem up, specifically the amount of lead found in recent studies. Newark’s water was found to have three times the amount of acceptable lead in its tap water, but no specific locations were give as to what places are being affected by this contamination. Newarks Water Department will be required to take actions such as testing public school water supplies, changing lead pipe lines, and maintaining more accurate maintainence schedules and records. By holding people accountable, Newark is changing its vulnerability towards water contamination 

pece_annotation_1517324894

ArielMejiaNJIT

The presented artifact talks about the pollution management in the Passaic River. The water body has been contaminated from previous manufacaturing companies that would dump toxic material into the river. According to the Environmental Protection Agency, "two cleanups of the river have been completed." However, the plan on a third cleanup was created in March of 2016. The state is looking into getting residents back to the river through park creation, education and cultural events which I find great, but a concern of mine is what if the water isn't safe enough? These things have to be taken into consideration because human lives are at stake. 

pece_annotation_1524594757

ArielMejiaNJIT
Annotation of

I uploaded this artifact because I believe that reparing Newark’s infrastructure is very important, especially since a lot of it’s economy relies on it. Without the repairs, it would lead to bigger problems such as increasing the cost of maintenance for its residents and the companies that use it daily. This decision made me realize that although Newark is struggling in bringing its economy back, its politicians know that maintaining it’s road is the foundation towards recovering from the recession.

pece_annotation_1524010337

ArielMejiaNJIT

This article presents how Newark is taking precautionary measures to help people affected by incoming Hurricane Sandy.  The city of Newark opened JFK Center as a shelter with the help of the Amercian Red Cross. The city also advised business and home owners how to prepare for the storm to avoid minimal damage to their properties. This display of precaution demonstrates how Newark is resilient to incoming storms during hurricane seasons.