Empirical data
Taina Miranda AraujoStudie provides visual representations of lead concentration in Santa Ana cross matching it with vulnerability risk.
Studie provides visual representations of lead concentration in Santa Ana cross matching it with vulnerability risk.
“Also of note when interpreting our results is that this study did not take into consideration the ingestion of heavy metals through the dietary route. Had we considered this additional exposure pathway, our calculated chronic daily intake levels of heavy metals would have been greater, resulting in higher estimated risk (particularly for metals such as Pb, As, and Cd which have been widely documented in various foods)” (Marsi et al. 2021)
“Both cancer and non-cancer risk at the Census tract level exhibited positive correlations with indicators of social as well as physiological vulnerability” (Marsi et al. 2021)
Exposure to heavy metals has been associated with adverse health effects and disproportionately impacts communities of a lower socio-economic status.
This study used a community-based participatory research approach to collect and analyze a large number of randomly sampled soil measurements to yield a high spatially resolved understanding of the distribution of heavy metals in the Santa Ana soil, in an effort to exposure misclassification. This study looks into average metal concentrations at the Census tract level and by land use type, which helps map potential sources of heavy metals in the soil and better understand the association between socioeconomic status and soil contamination (Marsi et al. 2021).
In 2018, soil samples of eight heavy metals including lead (Pb), arsenic (As), manganese (Mn), chromium (Cr), nickel (Ni), copper (Cu), cadmium (Cd), and zinc (Zn) were collected across Santa Ana. These were analyzed at a high resolution using XRF analysis. Then, metal concentrations were mapped out and American Community Survey data was used to assess the metals throughout Census tracts in terms of social and economic variables. Risk assessment was conducted to evaluate carcinogenic risk. The results of the concentrations of soil metals were categorized according to land-use type and socioeconomic factors. “Census tracts where the median household income was under $50 000 had 90%, 92.9%, 56.6%, and 54.3% higher Pb, Zn, Cd, and As concentrations compared to high-income counterparts” (Marsi et al. 2021). All Census tracts in Santa were above hazard inder >1, which implies non-carcinogenic effects, and almost all Census tracts showed a cancer risk above 104, which implies greater than acceptable risk. Risk was found to be driven by childhood exposure.
It was concluded that the issue of elevated soil contamination relates back to environmental justice due to overlap between contaminated areas and neighborhoods of lower socioeconomic status. Marsi et al. (2021) found there needs to be more community-driven recommendations for policies and other actions to address disproportionate solid contamination and prevent adverse health outcomes.
Published in May 2021, amid the coronavirus pandemic where in-person community workshops and meetings turned into weekly virtual meetings.
-> Authors:
Shahir Masri: Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine; air pollution scientist.
Alana M. W. LeBrón: Department of Health, Society, and Behavior, University of California, Irvine; Assistant Professor, Chicano/Latino Studies; Interests: structural racism and health, health of Latina/o communities, community-based participatory research.
Michael D. Logue: Department of Chicano/Latino Studies, University of California, Irvine
Enrique Valencia: Orange County Environmental Justice, Santa Ana
Abel Ruiz: Jóvenes Cultivando Cambios, Santa Ana; CRECE Urban Farming Cooperative member
Abigail Reyes: Community Resilience, University of California, Irvine
Jun Wu: Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine
How are Data Gaps Worked Around:
Sarnia, and the surrounding area around chemical valley, have 9 air monitoring stations in which air pollutants are monitored from the nearby petrochemical complex. Until 2017, only data from one of these stations (the one on Christina Street in downtown Sarnia) was publicly available. This created a gap in accessiblility of important data for sarnia and the nearby AFN residents. In September 2015, the Clean Air Sarnia and Area group launched as a "community advisory panel made up of representatives from the public, government, First Nations, and industry, who are dedicated to providing the community with a clear understanding of ambient air quality in the Sarnia area." This group works to improve air quality in Sarnia by making information about air quality publicly available and by making recommendations to relevant authorities. In 2018, this group launched the website: https://reporting.cleanairsarniaandarea.com/ (also uploaded as an artifact) which allows public to access data from the air quality monitoring stations and understand how air quality compares to Ontario's standards. This site works to fill the gap of publicly available air quality data in Sarnia.
This report from Ecojustice shows a decline in air pollution compared to Ecojustice's first report released in 2007 for the area around Chemical Valley, yet Sarnia industries continue "to release far more pollution, and in particular far more SO2 , than comparable U.S. refineries." One contributor to the continued excessive emissions is Ontario's lagging air quality standards. The report notes that "Ontario’s AAQC and air quality standards are lagging behind current science on the health impacts of air pollutants, which may put the health of residents at risk." The report highlights pollutants where Ontario's standard is above the national standard or where Ontario has no standard at all. Additionally, Sarnia's benzene emissions are exempt from Ontario's health-based standard for this chemical and are instead regulated by "an industry technical-based standard" allowing benzene levels to be far higher than the health-based standard. The lagging, lack of, or exemption from regulation undercut efforts in monitoring and reducing emissions to a "safe" level as what is considered "safe" by standards is out of line with what is considered "safe" by health and other standards.
META: Water seems to be one important medium through which NOLA envisions the “impacts” of the Anthropocene—scarcity, abundance, temporalities and spatial distributions, management of, and hazards that emerge in its context. Less is said about the causal or attributional aspects of the Anthropocene. How might water function as an entry point into the assemblages of local anthropocenics?
I found the NOLA Hazard Mitigation Plan for 2018, which frames the impacts of the Anthropocene as an intersection of weather extremes amid climate change and evolving vulnerabilities of its people. Four of seven items in the executive summary note water as central to local interventions: flood awareness, flood repair, flood mitigation, flood infrastructure. Too much water or water in the wrong places and the aftereffect of water on infrastructure and lives. One expression, then, is preparedness.
MACRO: Mitigation is an interesting analytic for the Anthropocene. In the US mitigation plans are shaped by the 1988 Stafford Act (which amended the 1974 Disaster Relief Act). Constraints on communities come through rules, regulations, policies, (dis)incentives, and surveillance by state and federal authorities. Much of this is bound by economic and administrative discourses.
Goals are set in this document—broken out by timelines, activities, priorities, and capabilities. Another expression is classification of anthropocenics by subfields and accounting metrics. How do we measure progress and what is deferred to the future, 5-10 years out from today, a goal that has no tangible accountability but is named and acknowledged. What are the practices of naming, responsibility, and making (in)visible in the Anthropocene?
BIO: One new initiative, Ready for Rain, in particular is of interest to me as it highlights the more neoliberal vision for how the public should self-regulate risk and mitigate harm. I hear this as an extension of a government agency program to make the nation Weather Ready. Other bullets highlight “green” buildings, energies, and infrastructures. These could be examples of how the city envisions the Anthropocene feedback loop of humans changing/planning for climate alterations, which is a fairly typical lens.
Some questions: What does the water do? What does the water know? If we trace water in all its instantiations (e.g. historical water, flow of water, chemistry of water, application of water, temperature of water), what do we learn about the future imaginaries of what NOLA will / could / ought to become?
Resilience is a term that is widely embraced by many in city management and planning. It holds the positive gloss not just of recovery but bouncing back better. To my ears, it has become one of many anthems of the Anthropocene, a kind of restrained tempo thrumming along through communities that will adapt to climate change (or seasonal-to-subseasonal climate variability post Trump). They will mitigate, innovate, transform, strategize in order to endure unanticipated shocks, both chronic and acute.
NOLA is one of 100 Resilient Cities named by the Rockefeller Foundation sometime in 2013. Like others selected across the globe, the city of New Orleans would benefit from the resources of a Chief Resilience Officer (CRO), an expert in resilience to be hired to work within city governance to develop a strategic plan; NOLA's was published in 2015. Selection of the cities for the "100 Resilient Cities" initiative was difficult, a competitive bid for resources based primarily on a city's recent experience with disaster, usually connected to a weather or climate extreme (e.g. hurricane, flood, etc). Resources were provided via the hierarchy of the CRO, sometimes to hire staff, develop training for the community, and create working groups and to write the stratetic plan. As one former directer of NOLA RC said of this opportunity provided by Katrina, the disaster that qualified NOLA for Rockefeller monies, it demonstrates the need for an the age of resilience. In what ways is resilience measured, accounted for, adjudicated and managed through or in spite of this strategic document?
The language of resilience includes many terms that I think of as a collective imaginary of utopian preparedness, a vision for a nation that is--in the parlance of the weather prediction community in which I work--weather ready. Through the filter of resilience, then, vulnerability (another problematic term) is eradicated through individual action, community engineering, and adherance to strategic policies like 100RC. Yet how does this image of NOLA, one of "mindful citizenry" engaged in "partnerships" around the city (terms used in their summary video), match with the realities of living in NOLA, today and in the everyday future?
Resilience is also a term widely critiqued in STS and the broader social science and humanistic disciplines. For good reason. Common questions in this literature: What counts as resilience? Who decides? At what costs? Resilience against what? What does resilience elide? How has the discourse of resilience reframed individual and community accountability? What is the political economy of resilience? I'm interested in the discourses of preparedness and planning, and "the eventness" of disaster, as Scott has highlighted many times. But my concern is not just to critique and tear down concepts like resilence (or vulnerability). I worry that we then evicerate common lexicons of hope and imaginaries of the future that do some good. How are we as field campus participants and those who re-envision or reveal the quotidian reflexive? How do we triage the Anthropocene amid our own state of compromise--as scholars, participants in Capitalism, in post colonialism, humans? What are our ethical commitments? How do we make good?