Skip to main content

Search

Davies, Thom, and Alice Mah. 2020 (What concepts does this text build from and advance?)

Taina Miranda Araujo

This book builds on environmental justice research and concepts. In a reflection over the 1984 Bhopal gas tragedy, Kim Fortun (2012) proposed the beginning of a “late industrialism” era where disasters would be normalized as a result of conflicting information from the media and “experts” making it impossible for individuals to make informed decisions on politics and to demand environmental regulation. Bullard and Wright (2009) and Pellow (2018) proposed ethnic minorities and groups from lower socio-economic status are disproportionately burdened by toxic pollution; polluted communities face an uphill environmental justice battle against powerful corporations and local politicians to prove this disproportional toxic exposure. Brown (1993) and Allen (2003) proposed “popular epidemiology,” where communities would upkeep with their own health research, as an important way to include the community in research that would benefit them; with the benefit of having multiple different perspectives addressing one issue. Citizen science, coined by Alan Irwin (1995) is a popular concept that enforces community-based participatory research. Pellow (2018) proposed “critical environmental justices,'' defining it in four pillars: (1) “intersectional forms of inequality and oppression,” (2) “the role of scale in the production and possible resolution of environmental injustices,” (3) “recognition that social inequalities are deeply embedded in state power,” (4) “indispensability, arguing that “excluded, marginalized, and othered populations, beings, and things ... must not be viewed as expendable but rather as indispensable to our collective futures'' (Pellow 2018, 26).

Thom and Mah (2022) build on the importance of community inclusion in research. Although there are scholars interested in coming up with solutions on social-environmental problems. The community rarely benefits from the results of that research because there’s a huge disconnect between academia and neighborhoods with limited resources. Often, individuals of lower socio-economic status are left uninformed and underrepresented, even in cases of research. This book uses case studies of community-based participatory environmental health and justice research to show different ways to understand environmental injustice, political strategies, and ways to expand citizen science engagement and environmental literacy around the world. 

 

Davies, Thom, and Alice Mah. 2020 (What does this text focus on and what methods does it build from?)

Taina Miranda Araujo

Text focuses on questions about the production and spread of knowledge, and the role science plays in society. Thom and Mah introduce the term “post-truths” that is defined by the Oxford Dictionary as “denoting circumstances in which objective facts are less influential in shaping public opinion than appeals to emotion and personal belief.” Which factors into how the intersection of science, politics, and values around the world determine a population’s attitude towards environmental justice. They argue for the importance of “science, knowledge, and data that are produced by and for ordinary people living in environmental risks and hazards” (Thom and Mah 2022). In doing so, they recognize data isn't sufficient to solve environmental injustice, especially since issues of environmental pollution are so deeply intertwined with structures that perpetuate social inequalities. Instead, they suggest an interdisciplinary approach that integrates “legacies of environmental justice movement, participatory citizen science,” and “experts” to come up with holistic questions on how to overcome environmental inequality and advance the environmental justice movement amid challenges on the salience of environmental expertise.

Thom and Mah use four case studies of community-based participatory environmental health and justice research to show the importance of including citizens in scientific research. Citizen science refers to public engagement with science, from data sensing and crowdsourcing to design, collection, analysis of research. Although citizen science is not the only answer - with Catree (2016) pointing out that citizen-led processes have become a “lucrative business,” which creates a conflict of interest - this book redefines the meaning of “justice” within the environmental justice movement and explores “role and interpretation of citizenship within citizen science research (Thom and Mah 2022). They recognize there’s tension in balancing a community’s subjective experience and contextual knowledge with rigorous, scientifically appropriate research. 

To tackle environmental injustice in a post-truth era, Thom and Mah (2022) argue there needs to be political change. An interdisciplinary approach is used to study local and global environmental justice challenges with a range of “qualitative and quantitative social science methods, including community-based participatory research (CBPR), epidemiology, ethnography, visual methods, and other innovative methods of participatory environmental justice and citizen science research” (Thom and Mah 2022). 

 

Davies, Thom, and Alice Mah. 2020 (What is notable about the place or time of its publication?)

Taina Miranda Araujo

This article was published in 2022 in England. This is amid the coronavirus pandemic and after the populist influence of Trump’s fake news politics around the world. With populist leaders propagating their own version of post-truths in India, Russia, Turkey, and Brazil. These leaders have incited a new wave of climate change deniers while political conflicts and environmental vulnerabilities worsen worldwide. 

At the time of the article, Trump had defunded environmental protection and pulled the USA from the Paris agreement - although, since then, Biden has proposed other plans on environmental justice, and the US has rejoined the Paris agreement -, Brexit had threatened to derail  environmental regulation - still remains an issue -, and Brazil’s Bolsonaro had opened vast tracts of Amozonian forest for permanent exploitation - still remains an issue

 

Human Ecology of Climate Change Hazards in Vietnam: Overview

annika

This book provides a comprehensive overview of the climate hazards facing Vietnam. Chapter 3 in particular details the effects of climate change on the coast of Vietnam, which is relevant to the Vietnam case study and can serve as a reference for coastal climate hazards that intersect with local industrial hazards. The text notes the effects of the region’s topology—mountainous, with a long coastline—on the types of climate hazards experienced in the country in recent decades. The text describes 6 coastal provinces in North Central Vietnam and 15 provinces in the Northern mountainous region (37). Coastal precipitation, storms, flash floods, droughts, coastal erosion, and landslides affect the agriculture, aquaculture, forestry, industry, and tourism sectors, along with the dense local population. Most of the coast is expected (via climate modeling for different RCPs) to see an increase in rainfall this century. Section 2.1.3: Natural Hazards and Section 2.1.4: Climate Change Vulnerability are quoted extensively below.

Human Ecology of Climate Change Hazards in Vietnam: Quotes

annika

“Landfalls of storms usually accompanied by high tide and heavy rain result in long periods of rain and floods. The flood season in Central Vietnam lasts from June to October. Along the rivers between Quang Binh and Binh Thuan, the flood season lasts from September to December. The Central region has short and steep rivers with high debits. Dike systems in this region are relatively low or incomplete. 8-meter-high floods not only occur along the main streams but also spread over the floodplains (Le et al. 2012).” (43)

“Storms moved southward in recent years, though it is widely expected that because of the increasing temperature, the North will face more storms in the near future. Also the intensity of the storms is expected to increase, resulting in more wind and more intense precipitation (CCFSC 2001; IPCC 2007). In particular, more intense storms, representing in more threats to people’s lives, livelihoods, infrastructure, and agriculture, are forecasted.” (43)

“In 2009, storm Ketsana affected provinces along the Vietnamese Central coast, killing 163 people and causing over 600 million $USD of damage (CCSFC 2010)...In 2010, storms and other natural hazards killed or caused missing 173 people. 168 others were injured in October 2010 (GSO 2014)...In 2012, the South China Sea faced 12 storms, of which 4 directly affected Central coast…In 2013, Central Vietnam was hit directly by consecutive storms. The Wutip storm in September 2013 damaged over 1000 houses (Vietnam NCHMF 2013). Over 70,000 people in vulnerable areas were moved to shelters along the central coastline (Al Jazeera America, accessed November 22, 2013). In November 2013, the Haiyan storm forced over 800,000 people to evacuate. Storm Nari in November 2013 destroyed about 12,000 houses in 7 central provinces (The Weather Channel, accessed November 22, 2013)...In 2016, six tropical depressions and ten storms affected the Vietnamese Central coast. Six storms and one tropical depression directly impacted the land…In September 2017, Central Vietnam was hit by the Doksuri storm. Over 100,000 people were evacuated, 4 people died, and 10 were injured. The storm Doksuri caused heavy rains and floods all over the provinces in the Vietnamese Northern Central coast. Thousands of houses were damaged or destroyed. More than 50,000 houses in Ha Tinh, Quang Binh, Quang Tri, and Thua Thien Hue provinces were damaged. Quang Binh People’s Committee reported that about 200,000 houses were flooded or submerged, 5000 lost their roofs and 20 collapsed (updated news on Vietnamnet website, accessed on 15 September 2017).” (43-44)

“By 1996, over 2000 square kilometers of the Vietnamese coast was estimated to be at risk for annual floods. Flood damage is expected to worsen if the daily rainfall increases by 12–19%. …Drought intensified as a result of the increased variation in rainfall and evapora- tion (3% along the coast and 8% inland by 2070). The effect is triggered by rising temperatures (MONRE 2016)...Landslides in the Northern Central coast are often triggered by heavy rains and storms, resulting in large amounts of sliding material downhill. Riverbank erosion is widely spread in this region, in particular during the rainy season. The lower part of the rivers is severely affected. Coastal erosion goes up to 10 meters annually, which worsens with the sea level rise of the recent years.” (44)

“The vulnerability of agriculture in the districts depends on extreme climatic events. Most districts in the Ha Tinh, Quang Binh, and Quang Tri provinces have a high exposure because they suffer storms, floods, and drought. Districts with a high exposure index show also a high vulnerability. For example, the Cam Xuyen district (Ha Tinh province) with the highest exposure in the region (0.57) represents the highest vulnerability (0.56). This underlines that the agriculture in the region with traditional methods mainly depends on the weather conditions.” (45)

“Provinces of the Vietnamese Northern Central coast have a long coastline, many estuaries, lagoons, and bays (Le et al. 2012). Aquaculture is promoted and gradually became a leading economic sector. Shrimp, crab, seahorse, holothurians, and Gracilaria asiatica are the main products. Aquaculture farmers, including both fish and crustaceans, are water-dependent and influenced the quality of coastal resources. Higher temperatures and more droughts affect the yields. This is ongoing as the yields of the spring crops declined drastically during recent years (GSO 2014). Aquaculture along the Vietnamese Northern Central coast shows high vulnerability to climate change: the vulnerability index ranges between 0.33 and 0.73. The highest value (0.73) is for the Gio Linh (Quang Tri province), while the lowest value (0.33) applies to the Thach Ha district (Ha Tinh province). Aquaculture shows a high vulnerability in majority of the districts (25/28), while only three districts (Sam Son, Cua Lo, and Thach Ha) report a moderate vulnerability. The exposure and sensitivity index of aquaculture are the highest of all sectors considered. The districts in the Quang Tri and Thua Thien Hue provinces show the highest vulnerability because of its high sensitivity (Fig. 2.3).” (46) This is section 2.1.4.2: Vulnerability of Aquaculture

“The majority of economic zones locate near the shoreline. This makes them vulnerable to climate change hazards. However, industry is less affected as compared to agriculture, forestry, and aquaculture. The industrial zones resist the effects of natural disasters easier. This explains that the industry is moderately vulnerable to climate change: this relates to the moderate qualification of exposure, sensitivity, and adaptation capacity of most of the districts. The high vulnerability in seven districts is related with the high exposure. Industrial plants in new areas which do not offer solid constructions and modern equipment are more at risk from natural hazards than other areas.” (48)

“The Vietnamese Northern Central coast shows its uneven distribution of the population, which reflects a difference between the eastern coastal plains and the western hilly and mountainous areas (Le et al. 2012). Most of the population is located along the national road no. 1A and in the eastern coastal plain, which accounts for over 70% of the population and which is more dense than the national average. Hilly and mountainous areas in the West account for 60% of the area, but only 30% of the people live in this region. Consequently, the average density in the western moun- tains of the country is only about 10–50 people per square kilometer (GSO 2014)...Natural hazards damage habitats of locals in hilly and mountainous areas as well as coastal areas, while storms and flash floods impact both uplands and lowlands. These latter are affected by a combination of storm, floods, sea level rise, and coastal erosion. This explains why the region has a moderate to high vulnerability of the population to climatic change.” (49)

“Currently, the government invests in developing marine tourism, ecotourism, speleo-tourism, and heritage tourism along the Vietnamese Northern Central coast. However, climate change affects the cultural monuments. Also the water supply in the region is under stress; biodiversity will decrease, and the hot season is expected lasting longer. All this will have a significant impact on the assets and the revenue from tourism. Tourism experiences the lowest vulnerability as compared to the other sectors in the region due to its low exposure.” (51)

“The likely effects of climate changes are most tangible in this province [Ky-Anh coast]. They include: 1. The average temperature during the period 2000–2010 increased by 0.6 °C as compared to the period 1970–1980. 2. Extreme weather events: Unusual cold periods (the spring of 2009 was the cold- est of the last 40 years) alternate with heat waves (in July 2010, the province experienced during 10 consecutive days temperatures over 40 °C); storms are frequently accompanied by heavy rains (the 2010 flood lasted for more than 20 days). 3. Changes in the frequency, the timing, and the intensity of the tropical storms are part of the changing weather profile. While traditionally storms occurred during the period September–November, the storm season now extends from August to December. Floods occur from April to December. They become stronger and faster, with more peak events and more devastating impacts (IPONRE 2009)...In short, prolonged periods of high and low temperatures, drought, sea level rise, storms heavy rains, and (sudden) floods are considered the main weather drivers affecting the livelihood of these communities in coastal Ha Tinh. Consequently, Ha Tinh faces four main problems: 1. Changes in water supply: Drinking water supply and irrigation are critical all over the province. In 2010, 27% of the agricultural land was irrigated. The provincial policy goal is irrigating 70% of the fields. Also by 2010, 70% of the population had access to piped water. The daily per capita consumption ranges from 80 to 100 liters on average. The policy goal is supplying 100% of the urban and 80 to 90% of the rural population with safe drinking water (HTG 2013). The increasing pressure on the water supply hampers realizing these goals. 2. Changing land use and urbanization: By 2001, 10% of the land in Ha Tinh was urban area, while the remaining surface was rural. By 2010, the urban land cov- ered 15% of the province, while the rural area decreased to 85% (HTG 2013). The figures illustrate the conversion of agricultural and bare land into urban areas. Consequently, the area is also increasingly affected by the urban heat island effect. 3. Progressing shoreline erosion: Depending on the inclination of the beaches, Ha Tinh loses beaches at a rate of 0.2–15.0 meters per year. 4. Changing livelihoods: Both urbanization and the changing climate affect the way of life in Ha Tinh. Especially farmers, aquaculturists, and fishermen change their habits, adapting to the increasing storms. Urbanization is associated with changes in consumption lifestyles, the size of the families, the ways of commuting, the gender roles, and the time residents spent at home.” (64)

 

What quotes from this text are exemplary or particularly evocative?

annika

“Not only is the history of environmental justice temporally deep, it is also geographically diverse and still expanding. Any account of environmental jus- tice will therefore remain incomplete, not least because it is still being written. Right now, across the world, thousands of communities are embroiled in the midst of ongoing toxic struggles. Environmental justice also belies its seemingly American past, and today it is increasingly clear that “the concept has travelled to different places” (Holifield et al. 2018, 2). Despite scholarly work on envi- ronmental justice remaining skewed toward American case studies (Reed and George 2011), many scholars have demonstrated how issues of environmental justice are truly global in nature (Walker 2009a; Armiero and Sedrez 2014; Guha 2014; Pellow 2018).” (6)

“A further body of environmental justice research places justice as a procedural concern. This form of environmental justice was born out of participatory democracy, and places the focus of justice squarely on access to decision making and accurate information upon which to base decisions (Yenneti and Day 2015). … This move from a distributional to a procedural logic of justice, which involves public hearings and access to reliable information, is predicated on the redistribution of power relations (Pellow 2018).” (8)

“Within the radical science movement tradition, citizen science emerged out of calls for the democratization of science and expertise to include perspectives from wider publics (Irwin 1995). For decades, scholars of science and technology studies (STS) have argued that scientific expertise is highly political and embed- ded in power relations (Irwin 1995; Epstein 1996; Fischer 2000; Frickel et al. 2010).” (11)

 

What is the main argument, narrative and effect of this text? What evidence and examples support these?

annika

This text (the introduction to the book Toxic Truths) summarizes the content of the full book while providing context for it through framing the environmental justice movement through the lens of the “post-truth” rhetoric that has been common for the last several years. The introduction argues for critical thought as a crucial antidote to “post-truth politics”, especially in the name of making sure that environmental justice momentum is not forgotten by the short public attention span during the chaotic and complex times we live in. The authors cite the examples of (i) environmental protection defunding under former American president Trump, (ii) the threat to environmental regulation of Brexit, and (iii) exploitation of the Amazon rainforest under Brazilian president Bolsonaro to highlight the recent politics that have muddied the waters of environmental justice and protection. The authors then expand their focus outward to include the interconnected roles of science, politics, and community values in the global fight for environmental justice.

Education Restructuring in Disasters

prerna_srigyan

Act 35, United Teachers of New Orleans, white flight and school integration, DEI and racialization; will be important to conceptualize overall linking of education to political economy. Further, the text produces many questions for me: How do reforms become spaces for racecraft? How might education restructuring in NOLA provide insight to education restructuring post- and during disaster? How does it help questioning the normative and the prescriptive? 

Further, in interviews of new hires of charter schools, Tompkins reveals how they are ambivalent about what they can do and about their positionalities and ethics, arguing that it leads to atomization and desocialization of the individual, and that prevents collective action. How can ambivalence be interpreted as a space for collective potential rather than collective paralysis? Can it be interpreted as such? Since action does not follow knowledge of contradictions and ambivalence, how can this subjectivity be articulated as politically productive?

 

What is the main argument, narrative and effect of this text? What evidence and examples support these?

annlejan7

Through this guide, Raphael makes a case for ES within EJ research. Particularly, Raphael articulates the value ES in: 1) building scholarly relevance and promoting restorative justice, 2) improving methodological designs in communication research, 3) reaching a wider pool of audiences in ways that are translatable to the public sphere, and 4) prompting greater reflexivity and collaborations by scholars across disciplines. Evidence is cited from a particular case study wherein a collaboration across academic institutions, independent research institutes, and a statewide advocacy organization led to improvements across the four aforementioned spheres for the research project itself. For example, by co-designing materials to increase the visibility and transparency of specialized research on pollution emissions, this collaboration succeeded in relating knowledge around pollution risks and lent strength to a wider organizing campaign to reduce emissions from the Chevron Oil Refinery in Richmond.