Skip to main content

Search

How was research for this document conducted? Who participated?

margauxf

“Since asthma surveillance data were not available at the census tract level for most of Louisiana, we estimated asthma burden using the inpatient discharge data available through LDH.”  (4)

“Case counts are not provided for CTs with a 2018 population of less than 800 to safeguard privacy.” (4)

“To minimize the need for suppression, inpatient discharge data was aggregated for the three most recent years available (2017–2019) and average annual crude rates were calculated for cases where asthma (ICD-10 code J45) was the primary diagnosis, as well as where asthma was any diagnosis.” (4)

“Spearman’s Rank Correlation was utilized to analyze the correlation between various social and environmental vulnerability factors, COVID-19 incidence, and the measures of asthma risk by CT.” (4)

 

“This was performed by first ranking the values in each dataset using RANK.AVG function in MS Excel 2016, followed by applying the PEARSON function to compare two datasets. Significance was set at alpha less than 0.05 (α < 0.05), with degrees of freedom (df) equal to two less than the total number of data points represented in both datasets” (4)

The research team works for the Section of Environmental Epidemiology and Toxicology, Office of Public Health, Louisiana Department of Health in Baton Rouge. Team members included Arundhati Bakshi; Shanon Soileau; Collete Stewart; Kate Friedman; Collete Maser; Alexis Williams; Kathleen Aubin; and Alicia Van Doren. 

How are the links between environmental conditions and health articulated?

margauxf

“Currently, much of the environmental focus of the pandemic remains on PM2.5 levels; however, we noted that higher levels of ozone was consistently associated with higher incidence rates of COVID-19, and it was the only environmental factor that appeared to have an additive effect over SVI on COVID-19 incidence (Fig 1).” (11)

“Specifically, our data show a moderately strong positive correlation between SVI due to minority status/language barrier and three health data variables: asthma hospitalization; estimated asthma prevalence; and cumulative COVID-19 incidence at 3 months (Table 2). Interestingly, SVI measures were either negatively or not significantly correlated COVID-19 incidence at the 9-and 12-month time points, indicating that social vulnerability factors may have played a greater role in COVID-19 spread early in the pandemic, but may have been of diminishing importance as the pandemic wore on (Fig 1 and Table 2).” (9)

Bakshi A, Van Doren A, Maser C, Aubin K, Stewart C, Soileau S, et al. (2022) Identifying Louisiana communities at the crossroads of environmental and social vulnerability, COVID-19, and asthma. PLoS ONE 17(2): e0264336. https:// doi.org/10.1371/journal.pone.0264336. 

What forms of evidence and expertise are used in the document?

margauxf

This document uses data resources from the Center for Disease Control/Agency for Toxic Substances and Disease Registry (CDC/ATSDR), the Environmental Protection Agency (EPA), and the Louisiana Department of Health (LDH).

These data resources include the Social Vulnerability Index (2018 - CDC/ATSDR), the NATA Respiratory Hazard Index (EPA 2014), PM2.5level (average annual concentration in ug/m3, EPA 2016), ozone level (summer seasonal average of daily maximum 8-hour concentration in air in parts per billion, EPA 2016), indoor mold concerns reported to IEQES program (average annual number of calls, LDH 2017-2019), cumulative COVID-19 incidence rate at 3-, 6-, 9- and 12-month increments (LDH March 2020 - March 2021), asthma hospitalization (average annual crude rate, where asthma was a primary diagnosis among hospitalization cases, LDH 2017-2019), and estimated asthma prevalence (average annual crude rate, where asthma was any diagnosis among hospitalization cases, LDH 2017-2019).

Context

margauxf

The Global Burden of Disease (GBD) study that the authors reference and model their call to action around is the worlds' largest scientific effort to quantify trends in health. It is lead by the Institute foe Health Metrics and Evaluation (IHME) at the University of Washington. It began in 1990 as a World Bank-commissioned study and is known for having introduced the disability-adujusted life year (DALY) as a new metric to quantify the burden of disease, injuries, and risk factors (or determinants), and enable comparisons. 

The 1990s were  a turning point for global health structures of governance and knowledge production, which the GBD study exemplifies. Global health experts began increasingly reframing health and healthcare in technical terms like DALY, removing health from public governance in ways that complemented and bolstered structural adjustment policies that were introduced in the 1980s (Janes 2004). As a result of these policies, the size, scope and reach of healthcare delivery and public health services were steadily reduced and downgraded. Anthropologists have been critical of these processes and other perceived failures in global health: the collapse of primary care initiatives fostered at Alma Ata in 1978, the resurgence of selective forms of primary care and vertical public health programs, and the ascendency of the World Bank as the principal health policymaking institution (Janes 2004, 2009).

Janes, Craig R (2004). "Going global in century XXI: medical anthropology and the new primary health care." Human Organization 63, no. 4: 457-471.

Janes, C. R., & Corbett, K. K. (2009). Anthropology and global health. Annual Review of Anthropology, 38, 167–183. doi:10.1146/annurev-anthro-091908-164314