Skip to main content

Search

Hawai'i

Misria

The ASTROMOVES project captures the career decision-making of astrophysicists and those in adjacent sciences, with particular attention to ‘intersectional’ identities, sex/gender diversity and visible/invisible disabilities. Qualitative interviews were recorded online (due to the Pandemic) and each scientist was assigned an Indigenous Hawaiian pseudonym. This was a subversive move to remind astrophysicists of the enormous debt they owe to the Hawaiian people for the use of their sacred mountain tops. All of the scientists consented to having a Hawaiian name. Seven scientists chose their own pseudonyms, most were Hawaiian place names: Maui, Waikiki, Waiheke, and Holualoa. Two Brazilians likewise chose Indigenous place names: Caramuru and Paraguaçu. The last name chosen was Kū'oko'a. Kū'oko'a is the Hawaiian concept of freedom, of which I was unaware. When questioned by editors, I had to evoke my Oahu birth as my right to use Hawaiian pseudonyms. For my visualizations, I chose to not use the Mercator projection which artificially enlarges Europe, instead I use the Peters projection or equal area map. Thus, Europe is de-emphasized by showing its area relative to the rest of the world. 

Holbrook, Jarita. 2023. "Visualizing Astrophysicists’ Careers." In 4S Paraconference X EiJ: Building a Global Record, curated by Misria Shaik Ali, Kim Fortun, Phillip Baum and Prerna Srigyan. Annual Meeting of the Society of Social Studies of Science. Honolulu, Hawai'i, Nov 8-11

Formosa Plastic's investment in the Taiwan AI Academy

tschuetz

The first section of the presentation focuses on the use of artificial intelligence to improve manufacturing and reduce carbon emissions (see 2019 report). Formosa's efforts go back to 2017, when the company was one of five business that each invested NT$30million in the creation of Taiwan’s first AI Academy, initiated by scholars at Academia Sinica (see also Lin 2018). According to the Ministry of Foreign Affairs “[t]he academy has drawn faculty from scholarly institutions ranging from Taiwan’s major universities to foreign research institutes, Academia Sinica and the Industrial Technology Research Institute, as well as from the corporate sphere, with AI managers and entrepreneurs coming in to share their real-world AI experience.” Further, they state that by 2020, FPG had trained over 100 workers through courses offered by the academy.

Carbon Capture at Yunlin Mailiao port

rexsimmons

Slides 37-55 outline FPG's current carbon capture system in Kaoshiung and its future plans for CCS systems in Mailiao, including an experimental system of biodegradable carbon capture. These initiatives, largely through Formosa Smart Energy Corp. also attempt to use AI models to regulate carbon capture for optimal production. 

 

See slides 40-42 for new initiatives on carbon capture. They list plans to build deep water carbon capture pits, being sited in Yunlin as of 9.2022.




The carbon capture system they have in place at Nanya seems to have reduced the amount of naptha necessary to manufacture butyl ether, a chemical used in solvents and pesticides, through reinjection of that carbon dioxide into source feedstocks (Enhanced Oil Recovery).

 

“國際碳捕捉技術發展

依據全球碳捕捉與封存研究所(Global CCS Institute, CCSI)最新發布之「2022年全球碳捕捉與

封存發展現況報告(The Global Status Of CCS 2022)」,⾄2022年全球共有30個⼤型CCS綜合

專案已經營運,其中有22個採⾏強制採油技術(Enhanced oil recovery, EOR),利⽤⼆氧化碳灌

注⾄快枯竭的油氣⽥,獲取更多殘存油氣,以增加效益,其餘8個專案封存於陸地或海洋深層

鹽⽔層,顯示現階段應⽤仍以EOR技術為主,除可減少碳排外,更可增加獲利。

 

自動翻譯

 Capture Technology Development

According to the "2022 Global Carbon Capture and Storage Storage Development Status Report“ (The Global Status Of CCS 2022), by 2022 there will be 30 large CCS comprehensive

The projects are already in operation, and 22 of them adopt enhanced oil recovery (EOR), using carbon dioxide irrigation. Inject into the depleted oil and gas to obtain more residual oil and gas to increase efficiency, and the remaining 8 projects are sealed in land or deep ocean

The salt water layer shows that the current application is still dominated by EOR technology, which can not only reduce carbon emissions, but also increase profits.” (Slide 38)

 

Heavy reliance on technosolutions to reach emission reduction and climate goals. Shift from oil as fuel to oil as material. Cooperation between industry, academic, and technical research organizations to research new carbon capture systems. Longevity of the petrochemical industry within climate politics is a high priority for FPG, but also the efficiency of petrochemical inputs. Climate change action is being pursued, but more so in capture of carbon emitted and repurposed within chemical reactions, as opposed to omitted through reductions in production