Skip to main content

Search

The Glass Plate

sgknowles

By Scott G. Knowles: As part of the STL Anthropocene Field Campus the research team visited the Wood Refinery Refinery History Museum on March 9, 2019. This museum is located on the grounds of the Wood River Refinery, a Shell Oil refinery built in 1917 and today owned by Phillips 66. The site is Roxana, Illinois, just upriver from Granite City, and just over two miles from the convergence of the Mississippi and Missouri Rivers. Sitting on the actual grounds of the refinery, the museum is an invitation to think across the micro, meso, and macro scales of the Quotidian Anthropocene, in terms of geography and also in terms of time. This refinery was built at the crux of the WWI, at a time when United States petrochemical production was entering an intensive phase of production, invention, corporate structuring, and global engagement. The museum is an invitation to think across temporal scales, backwards to the start of the refinery--through the individual lives of the workers and engineers whose lives defined the refinery--and forward to indeterminate points of future memory. This photo captures a key moment in an informal interview we did with one of the history guides. He had worked in the museum for decades before retiring. He explained to us that the museum sits in the former research facility of the refinery--and the glass plat he is showing reveals a beautiful artifact, a photograph made of the complex when it was built. Our guide only showed us this collection of slides after our conversation had advanced, perhaps after he was sure we were truly interested in his story, and the deeper history of the refinery. The pride in the place, the community of workers, and the teaching ability of the museum was manifest. The research team felt impressed, but also concerned about the health impacts (and naturally the environmental impacts as well) of the refinery. There was a mismatch in the scales--the memory of the individual tied to emotions of pride and knowledge of hard work done there--and the Anthropocene, global scale of petrochemicals. How do we resolve this mismatch? The glass plate is somehow a clue.

Responsive Curriculums

prerna_srigyan
  • The process of designing curriculum is quite useful as it details how different activities correspond to learning goals in science, mathematics, and technology. Fig. 3 describes the steps: selecting content through content specialists in the POAC team, making a curriculum outline, individual meetings with content specialists, and making the lesson plans. I really like the activities they designed, such as comparing different mask materials and how they protected against differently-sized viruses. They were also given time to research career pathways and present on epidemiology careers, a step that invites students to imagine career pathways. 

  • I realize the scope and audience of this paper is different, but I am so curious about how the Imhotep Academy created a setting that encouraged underrepresented students to participate and speak up, given that they cite evidence of how difficult that can be. How did they choose participants? 

  • Having read Freire’s Pedagogy of the Oppressed recently, I am thinking about his approach to curriculum design that is based on a feedback loop between would-be learners and would-be educators. The roles of learners and educators aren’t fixed. Content development is not done beforehand just by content specialists but in an iterative process with multiple feedback loops. Since very few research teams have the time or the resources to deploy Freire’s rigorous approach, I am not surprised that most curriculum development does not follow the route. And educators are working with former experiences anyway. So I am curious about how the authors’ previous experiences shaped their approach to curriculum design?

  • A context for this paper is the controversy on the proposed revisions to the California math curriculum that conservative media outlets argue “waters down” calculus–a cherry topping on the college admissions cake–to privilege data science in middle-school grades. Education researchers contend that apart from physics and engineering majors, not many colleges actually require calculus for admissions (many private institutions do), and that the relevance of advanced calculus for college preparation is overrated. 

  • National Commission on Excellence in Education ‘s 1983 report Nation At Risk: the need for a new STEM workforce specializing in computer science and technology 

  • National Council on Mathematics 2000 guidelines for preparing American students for college in Common Core Mathematics 

  • Stuck in the Shallow End: Virtual segregation; Inequality in learning computer science in American schools focusing on Black students