Skip to main content

Search

Formosa Plastic's investment in the Taiwan AI Academy

tschuetz

The first section of the presentation focuses on the use of artificial intelligence to improve manufacturing and reduce carbon emissions (see 2019 report). Formosa's efforts go back to 2017, when the company was one of five business that each invested NT$30million in the creation of Taiwan’s first AI Academy, initiated by scholars at Academia Sinica (see also Lin 2018). According to the Ministry of Foreign Affairs “[t]he academy has drawn faculty from scholarly institutions ranging from Taiwan’s major universities to foreign research institutes, Academia Sinica and the Industrial Technology Research Institute, as well as from the corporate sphere, with AI managers and entrepreneurs coming in to share their real-world AI experience.” Further, they state that by 2020, FPG had trained over 100 workers through courses offered by the academy.

Carbon Capture at Yunlin Mailiao port

rexsimmons

Slides 37-55 outline FPG's current carbon capture system in Kaoshiung and its future plans for CCS systems in Mailiao, including an experimental system of biodegradable carbon capture. These initiatives, largely through Formosa Smart Energy Corp. also attempt to use AI models to regulate carbon capture for optimal production. 

 

See slides 40-42 for new initiatives on carbon capture. They list plans to build deep water carbon capture pits, being sited in Yunlin as of 9.2022.




The carbon capture system they have in place at Nanya seems to have reduced the amount of naptha necessary to manufacture butyl ether, a chemical used in solvents and pesticides, through reinjection of that carbon dioxide into source feedstocks (Enhanced Oil Recovery).

 

“國際碳捕捉技術發展

依據全球碳捕捉與封存研究所(Global CCS Institute, CCSI)最新發布之「2022年全球碳捕捉與

封存發展現況報告(The Global Status Of CCS 2022)」,⾄2022年全球共有30個⼤型CCS綜合

專案已經營運,其中有22個採⾏強制採油技術(Enhanced oil recovery, EOR),利⽤⼆氧化碳灌

注⾄快枯竭的油氣⽥,獲取更多殘存油氣,以增加效益,其餘8個專案封存於陸地或海洋深層

鹽⽔層,顯示現階段應⽤仍以EOR技術為主,除可減少碳排外,更可增加獲利。

 

自動翻譯

 Capture Technology Development

According to the "2022 Global Carbon Capture and Storage Storage Development Status Report“ (The Global Status Of CCS 2022), by 2022 there will be 30 large CCS comprehensive

The projects are already in operation, and 22 of them adopt enhanced oil recovery (EOR), using carbon dioxide irrigation. Inject into the depleted oil and gas to obtain more residual oil and gas to increase efficiency, and the remaining 8 projects are sealed in land or deep ocean

The salt water layer shows that the current application is still dominated by EOR technology, which can not only reduce carbon emissions, but also increase profits.” (Slide 38)

 

Heavy reliance on technosolutions to reach emission reduction and climate goals. Shift from oil as fuel to oil as material. Cooperation between industry, academic, and technical research organizations to research new carbon capture systems. Longevity of the petrochemical industry within climate politics is a high priority for FPG, but also the efficiency of petrochemical inputs. Climate change action is being pursued, but more so in capture of carbon emitted and repurposed within chemical reactions, as opposed to omitted through reductions in production

 

Overview of Formosa Drainage Study

annika

This supplementary legal document describes recommendations for storm- and waste-water management improvements for the Formosa petrochemical plant in Calhoun County, Texas. The text is a fairly standard drainage assessment. The author describes non-trivial discharge of pollutants out of the plant’s outfalls, which drain into local waters, and the inability of the plant’s systems to prevent flooding from even small storms. For some context on this, it is pretty standard to design a stormwater system to be able to drain the 100-year storm (that is, the storm with a 1% or less chance of occurring in any given year). Formosa’s Texas plant demonstrated the inability to convey even the 2-year storm.

Formosa Drainage Study

annika

Emphases are mine:

Problem areas were identified based on the results from the outfall drainage studies provided by Formosa. Thus, all the results in the OPCC rely on those studies, uncertainities associated with those studies, and the assumptions made for those studies, some of which may or may not be appropriate as I pointed out in Supplement #2 [Page 4]” (3)

“The proposed improvements assume that the conveyance capacity of the problem areas is increased 100%, which would be able to handle twice as much flow that it currently does. The results from the Drainage Study are not conclusive as to what storm event Formosa’s system currently is capable of conveying. The report does mention that the system is not capable of conveying the 2-year storm, and “sometimes” not even the 1-year storm event. (3)

“A 45% contingency is applied to the OPCC due to the uncertainties associated with underground utilities, likelihood of existence of low road crossings and need to replace those, groundwater impacts, other unknowns, and additional costs associated with engineering, etc. 45% is reasonable and in line with industry practices in my experience, especially given the large amount of unknown information available.” (4) 

“My opinion from my July 9, 2018 report that “there have been and are still pellets and/or plastic materials discharges above trace amounts through Outfall 001” is further supported by the deposition testimony of Lisa Vitale, as representative for Freese & Nichols, Inc, that she and her colleagues have seen floating white pellets or small plastic pieces in Lavaca Bay and in the area near outfall 001 as part of her work on the receiving water monitoring program for Formosa’s TPDES permit...Ms. Vitale also testified that she told John Hyak of Formosa about these sightings as well as has sent him water samples with the pellets about five or six times, including at least one time prior to 2010. This, along with the June 2010 EPA Report I cited in my July Report, demonstrates to me that Formosa was aware of problems related to discharges of plastics from its facility since at least in 2010.” (6)