"Antibiotic Resistance in Louisiana"
fdabramoI situate my research at the crossroads of history, philosophy, sociology and anthropology of science. In the past, I have focused on epigenetics, environmental research, empirical bioethics and environmental justice, within and outside the academia, as you can read here, or here. Now I am focusing on antibiotic resistance, and I use it as a lens to interpret the contradictions of the last century derived by industrial production, environmental degradation and biomedical cultures.
What interests me is the (at that time) new epistemic discourse that since the Forties has been produced to explain morphological changes of organisms produce when they experience new environmental conditions or perturbations. Through an important experiment at the base of the so-called concept of genetic assimilation, Conrad H. Waddington showed that a thermic shock can produce changes in wings’ veins of fruit flies, changes that can eventually be inherited across generations, without the environmental trigger that caused them.
This focus on production and (genetic) storage of biological differences elicited by the environment is nowadays coupled with the knowledge produced through microbiome research that explains the phenotypic patterns that recur across generations.
In a thought-provoking twist, with microbiome research, the focus shifts from production and inheritance of biological differences to production and inheritance of biological similarities. Microbiome research shows that some phenotypic patterns are allowed by ecological communities of microorganisms composing all animals. Bacteria allow the development and functioning of our bodies within an epistemic framework that is now key to understand biology. The network of vessels composing mammals’ stomach is formed through cellular differentiation and expression of genes coordinated by bacteria. The same is true for our immune system that is coordinated by gut bacteria. Food, which is an important aspect of our lives also impacts on this microecology and mediates between our biological functions and functioning of means of production whose parts dedicated to food production have immense importance for our biology and our internal and external ecologies. Antibiotic resistance is one of the crossroads where culture, biology, history and the Anthropocene meet. Indeed, Antibiotic resistance shows that means of production of our societies have an even more widespread, deep and allegedly unexpected impact on the biology of animals and plants. The microorganism can indeed adapt to resist the selective toxicity of antibiotics. Moreover, bacteria can transfer their genetic code horizontally, by touch, so that we can acquire antibiotic resistance by eating food that functions as a vector, by hosting lice on our heads and many other contacts. Bacteria that are resistant to antibiotics that have been used as growth factors in animal husbandry and to prevent diseases in livestock and aquaculture, spread in natural ecosystems and can be found in wild species. Rivers and estuarine waters are places hosting antibiotic resistance.
Searching on PubMed (the search engine for biomedical literature) titles of articles containing the terms ‘antimicrobial’ and ‘Louisiana’ I retrieved just one twelve-years-old article. No results with terms such as 'Mississippi' or 'New Orleans'. The authors collected and analysed Oysters from both waters of Louisiana Gulf and in restaurants and food retailers in Baton Rouge. In most of the samples gathered, scientists recognised the presence of bacteria (Vibrio parahaemolyticus and Vibrio vulnificus) resistant to specific antimicrobials. Food production is indeed the first factor in terms of the quantity of antibiotics used. This use and related antibiotic resistance impact all the living beings present in a specific area, and can easily travel around the globe through many channels. As Littman & Viens have highlighted, a sustainable future is a future without antibiotics as “there may be no truly sustainable way of using antibiotics in the long-run, as microorganisms have shown to be almost infinitely adaptable since the first introduction of antibiotics” (Littman & Viens 2015). But in the meanwhile, we need to use them and antibiotic resistance is a phenomenon that can be better studied through environmental research, by analysing wild species and emissions nearby livestock, for instance.
The study that I retrieved focuses on Oysters. But what about antibiotic resistance conveyed through food that is consumed by the most?
What about exposures of communities that are living in highly polluted areas?
And what is the additive value on antibiotic resistance for individuals who experience the presence of industrial pollutants and that live in areas where cancer epidemics are registered?
In this respect, there is a strategy to cope with the issue of antibiotic resistance promoted by the Center for Disease Control and Prevention. The document doesn’t mention any action to monitor and regulate the production and usage of antibiotics in livestock. Nevertheless, the CDC wants to scrutinise, through genome sequencing, “Listeria, Salmonella, Campylobacter, and E. coli and uploads sequence data into PulseNet for nationwide monitoring of outbreaks and trends.” Moreover, the document reports that “In Fiscal Year 2019, Louisiana will begin simultaneously monitoring these isolates for resistance genes. When outbreaks are detected, local CDC-supported epidemiologists investigate the cases to stop spread.”
The questions that I would like to ask (to local ppl, activists, researchers, practitioners..) are:
What could be the epidemiologic characteristics (socioeconomic status, gender, residence..) of the populations more vulnerable to antibiotic resistance?
What is the additive role of antibiotic resistance for people living in highly polluted areas?
What is the impact of antibiotic resistance for people and patients living in areas where cancer incidence is high?
And on the long run I am interested in imagining possible strategies to not only living with the problem but also to tackle the problem itself, which means to develop strategies to answer the questions:
Why antibiotic resistance, which is known since a century, it’s a problem on the rise?
What is the role and interest of capitalism, in terms of profit-making of corporations, knowledge production and environmental degradation, in not being able to resolve antibiotic resistance?
What can be strategies of local communities to tackle the problem and to promote environmental justice in terms of alliances with ecologists, doctors, epidemiologists and other activists?
pece_annotation_1475591965
tamar.rogoszinskiBecause this is an academy, it does have tuition and fees. They are outlined as: Tuition, per credit hour: $981. Academic Support Fee, per semester: $420. Additional Fees (mandatory):$590 -- (Student Activity: $120, Health Center: $320, Reily Center: $150). Medical Insurance, per academic year: $3,030. Assuming people don't waive the medical insurance, take 16 credit hours (as is the norm for RPI), the yearly cost is: $20,156.
The Provost's Office provides students up to $500 for travel needed to present a poster or paper at a conference. There are other opportunities to be granted money with the purpose of travel for conferences or training opportunities.
Other than this information, I could not find who else would fund this academy. I can assume that Tulane takes on part of the burden as well as governmental agencies in their partner countries.
pece_annotation_1477256560
tamar.rogoszinskiThe main point of this article is that there is a crisis in Canada regarding mental health and suicide. Specifically within the Inuit population, a group of Aboriginal People in northern Canada. This issue has been ongoing for many decades, and despite the calls for emergency and the recognition of a crisis, little work has been done to help and prevent further suicide attempts.
pece_annotation_1477961893
tamar.rogoszinskiThis app provides information for healthcare providers about radiological and nuclear emergencies. There is a website as well that has more data, images, and background material to supplement the app. The app has extensive information regarding patient care in the case of an emergency. They provide management algorithms, dose estimators, scarce resources triage tools, isotopes of interest, countermeasures (Rx), emergency contact information, videos, and information regarding triage.
pece_annotation_1478040667
tamar.rogoszinskiThe citations in this article include not only the author's own work, but also many citations by other experts in the field and data. This tells us that the author did extensive research for this article and looked to others for opinions and information, instead of just using her own ethnographic research.
pece_annotation_1472844867
tamar.rogoszinskiThis work was supported by Grants-in-aid for the Cancer Control Policy from the Ministry of Health, Labour and Welfare, Japan.
pece_annotation_1479073731
tamar.rogoszinski- Seizues - since most of the stories are about patient's suffering from epilepsy.
- I looked at healthcare in Turkey, since he discusses people from there.
- I looked at where the locations he mentioned in Turkey are located
pece_annotation_1473449190
tamar.rogoszinskiMethods used by Farmer, et al include collecting data from the study done in Baltimor in the 1990's. They analyzed the statistics and observations found as main points of their argument. The model used in Haiti and the results from other methods implemented by physicians in those areas are also used as arguments to strengthen the article.