Skip to main content

Search

"Antibiotic Resistance in Louisiana"

fdabramo

I situate my research at the crossroads of history, philosophy, sociology and anthropology of science. In the past, I have focused on epigenetics, environmental research, empirical bioethics and environmental justice, within and outside the academia, as you can read here, or here. Now I am focusing on antibiotic resistance, and I use it as a lens to interpret the contradictions of the last century derived by industrial production, environmental degradation and biomedical cultures.

What interests me is the (at that time) new epistemic discourse that since the Forties has been produced to explain morphological changes of organisms produce when they experience new environmental conditions or perturbations. Through an important experiment at the base of the so-called concept of genetic assimilation, Conrad H. Waddington showed that a thermic shock can produce changes in wings’ veins of fruit flies, changes that can eventually be inherited across generations, without the environmental trigger that caused them.

This focus on production and (genetic) storage of biological differences elicited by the environment is nowadays coupled with the knowledge produced through microbiome research that explains the phenotypic patterns that recur across generations.

In a thought-provoking twist, with microbiome research, the focus shifts from production and inheritance of biological differences to production and inheritance of biological similarities. Microbiome research shows that some phenotypic patterns are allowed by ecological communities of microorganisms composing all animals. Bacteria allow the development and functioning of our bodies within an epistemic framework that is now key to understand biology. The network of vessels composing mammals’ stomach is formed through cellular differentiation and expression of genes coordinated by bacteria. The same is true for our immune system that is coordinated by gut bacteria. Food, which is an important aspect of our lives also impacts on this microecology and mediates between our biological functions and functioning of means of production whose parts dedicated to food production have immense importance for our biology and our internal and external ecologies. Antibiotic resistance is one of the crossroads where culture, biology, history and the Anthropocene meet. Indeed, Antibiotic resistance shows that means of production of our societies have an even more widespread, deep and allegedly unexpected impact on the biology of animals and plants. The microorganism can indeed adapt to resist the selective toxicity of antibiotics. Moreover, bacteria can transfer their genetic code horizontally, by touch, so that we can acquire antibiotic resistance by eating food that functions as a vector, by hosting lice on our heads and many other contacts. Bacteria that are resistant to antibiotics that have been used as growth factors in animal husbandry and to prevent diseases in livestock and aquaculture, spread in natural ecosystems and can be found in wild species. Rivers and estuarine waters are places hosting antibiotic resistance.

Searching on PubMed (the search engine for biomedical literature) titles of articles containing the terms ‘antimicrobial’ and ‘Louisiana’ I retrieved just one twelve-years-old article. No results with terms such as 'Mississippi' or 'New Orleans'. The authors collected and analysed Oysters from both waters of Louisiana Gulf and in restaurants and food retailers in Baton Rouge. In most of the samples gathered, scientists recognised the presence of bacteria (Vibrio parahaemolyticus and Vibrio vulnificus) resistant to specific antimicrobials. Food production is indeed the first factor in terms of the quantity of antibiotics used. This use and related antibiotic resistance impact all the living beings present in a specific area, and can easily travel around the globe through many channels. As Littman & Viens have highlighted, a sustainable future is a future without antibiotics as “there may be no truly sustainable way of using antibiotics in the long-run, as microorganisms have shown to be almost infinitely adaptable since the first introduction of antibiotics” (Littman & Viens 2015). But in the meanwhile, we need to use them and antibiotic resistance is a phenomenon that can be better studied through environmental research, by analysing wild species and emissions nearby livestock, for instance.

The study that I retrieved focuses on Oysters. But what about antibiotic resistance conveyed through food that is consumed by the most?

What about exposures of communities that are living in highly polluted areas?

And what is the additive value on antibiotic resistance for individuals who experience the presence of industrial pollutants and that live in areas where cancer epidemics are registered?

In this respect, there is a strategy to cope with the issue of antibiotic resistance promoted by the Center for Disease Control and Prevention. The document doesn’t mention any action to monitor and regulate the production and usage of antibiotics in livestock. Nevertheless, the CDC wants to scrutinise, through genome sequencing, “Listeria, Salmonella, Campylobacter, and E. coli and uploads sequence data into PulseNet for nationwide monitoring of outbreaks and trends.” Moreover, the document reports that “In Fiscal Year 2019, Louisiana will begin simultaneously monitoring these isolates for resistance genes. When outbreaks are detected, local CDC-supported epidemiologists investigate the cases to stop spread.”

The questions that I would like to ask (to local ppl, activists, researchers, practitioners..) are:

What could be the epidemiologic characteristics (socioeconomic status, gender, residence..) of the populations more vulnerable to antibiotic resistance?

What is the additive role of antibiotic resistance for people living in highly polluted areas?

What is the impact of antibiotic resistance for people and patients living in areas where cancer incidence is high?

 

And on the long run I am interested in imagining possible strategies to not only living with the problem but also to tackle the problem itself, which means to develop strategies to answer the questions:

Why antibiotic resistance, which is known since a century, it’s a problem on the rise?

What is the role and interest of capitalism, in terms of profit-making of corporations, knowledge production and environmental degradation, in not being able to resolve antibiotic resistance?

What can be strategies of local communities to tackle the problem and to promote environmental justice in terms of alliances with ecologists, doctors, epidemiologists and other activists?

pece_annotation_1473112992

harrison.leinweber

UN - potentially caused the cholera outbreak, organized/managing response to the cholera outbreak without acknowledging responsibility for it

Pedro Medrano - UN coordinator for the response in Haiti

USAID - donor of approximately $1.5 billion since earthquake, uses international contractors to rebuild Haiti

Health Ministry - part of the Haitian govt. that manages country health and vaccinations

Ban Ki-moon - won't acknowledge possible UN role in creating cholera outbreak, UN Secretary-General

Haitian Government - currently undergoing disruption due to a  change in terms of its Senators and disagreements between parties

pece_annotation_1473634755

harrison.leinweber
Annotation of

Users can voice interest in annotating or translating works to teach3eleven [at] gmail.com. The website operators maintain a listing of works that they would like annotated. Users can also share annotations via twitter, facebook, tumbler, google+, and email. Users are also able to comment on the articles directly on the website and can reply to eachothers comments for discussion there as well.

pece_annotation_1474238525

harrison.leinweber

"We help people worldwide where the need is greatest, delivering emergency medical aid to people affected by conflict, epidemics, disasters, or exclusion from health care." From their website, they try to help people in medical emergencies where there isn't access to adequate healthcare.

pece_annotation_1474836225

harrison.leinweber

This article discusses emergency response in the historical incidents and described why emergency responders had difficulty rescuing victims and why there were so many fatalities. The article did not, however, discuss the details of the emergency response, it focused much more on how the situation happened and the political and social aftermath.

pece_annotation_1475429836

harrison.leinweber

This question is a little difficult to answer due to the lack of bibliography; however, one can infer that the author conducted interviews or found interviews which were conducted by third parties as a portion of his research. The author also appears to have researched laws in France and the rest of the European Union.

pece_annotation_1472923738

harrison.leinweber

Dr Schmid discusses her view that the engineers and scientists should not be the only people looking at the response to a nuclear incident. She believes that nuclear response teams need to move away from those in the late 1900s, in which a select technically-competent few were in charge of maintaining the safety and security of nuclear facilities, to those that bring together scholars, technical experts, and international relief organizations to educate the public and determine what is in the best interest of the residents of the area as well as society in general. Dr. Schmid believes that scholarship in science, technology, society studies applies to this situation and can be a great help in determining future actions.

pece_annotation_1473619716

harrison.leinweber

The authors support their argument by referencing a study that showed that race was associated with how quickly one received therapeutics. They also referenced that PIH was able to help in Haiti by introducing a model of care in which the patients chose someone to assist them by delivering drugs and supportive care in their home. This person would live nearby and was seen by some as a very effective way to remove barriers to care for AIDS and other chronic diseases in impoverished environments. They also say by removing issues like access to clean water that impoverished areas see, MTCT rates of HIV decreased.