Skip to main content

Search

The Glass Plate

sgknowles

By Scott G. Knowles: As part of the STL Anthropocene Field Campus the research team visited the Wood Refinery Refinery History Museum on March 9, 2019. This museum is located on the grounds of the Wood River Refinery, a Shell Oil refinery built in 1917 and today owned by Phillips 66. The site is Roxana, Illinois, just upriver from Granite City, and just over two miles from the convergence of the Mississippi and Missouri Rivers. Sitting on the actual grounds of the refinery, the museum is an invitation to think across the micro, meso, and macro scales of the Quotidian Anthropocene, in terms of geography and also in terms of time. This refinery was built at the crux of the WWI, at a time when United States petrochemical production was entering an intensive phase of production, invention, corporate structuring, and global engagement. The museum is an invitation to think across temporal scales, backwards to the start of the refinery--through the individual lives of the workers and engineers whose lives defined the refinery--and forward to indeterminate points of future memory. This photo captures a key moment in an informal interview we did with one of the history guides. He had worked in the museum for decades before retiring. He explained to us that the museum sits in the former research facility of the refinery--and the glass plat he is showing reveals a beautiful artifact, a photograph made of the complex when it was built. Our guide only showed us this collection of slides after our conversation had advanced, perhaps after he was sure we were truly interested in his story, and the deeper history of the refinery. The pride in the place, the community of workers, and the teaching ability of the museum was manifest. The research team felt impressed, but also concerned about the health impacts (and naturally the environmental impacts as well) of the refinery. There was a mismatch in the scales--the memory of the individual tied to emotions of pride and knowledge of hard work done there--and the Anthropocene, global scale of petrochemicals. How do we resolve this mismatch? The glass plate is somehow a clue.

Harmful PM2.5 emissions in Dhaka, Bangledesh prompting researchers to study emissions during winter and monsoon season.

helena.dav

Assessing the PM2.5 impact of biomass combustion in megacity Dhaka, Bangladesh - PubMed (nih.gov)

This article is about crop burning in Dhaka, Bangladesh and attempts to figure out if there is more or less harmful PM2.5 particulate air pollution caused by either fossil fuels or biomass, and during which season is one or the other higher in the air pollution it produces. During monsoon season, fossil fuels lead in the most PM2.5 releases at 44.3%. When it is not monsoon season and is the winter season, the percentages are way higher for PM2.5 air particulate releases at 41.4% for the remainder of the year. Across the globe, there are now people stepping up to uncover the true and real environmental and health impacts this harmful particulate byproduct causes in different parts of the world and with differring weather conditions than what we see in North Carolina. 

Emissions from Biomass Burning in South/Southeast Asia; correcting the miscalculation about the PM2.5 emissions from burning.

helena.dav

https://www.researchgate.net/publication/351209404_PM25_Emissions_from_…;

This study is set in South/Southeast Asia and uncovering that, when trying to count the percentages of PM2.5 put off during biomass, the true amount of emissions were being gravely undercalculated. Specifically rice straw burning becuase the amount burned varied so much because of different harvest and burning practices that it just wasn't taken into consideration. What this study does is go bottom up using these strategies: "subnational spatial database of rice-harvested area, region-specific fuel-loading factors, region, and burning-practice-specific emission and combustion factors, including literature-derived estimates of straw and stubble burned"(Lasko et al. 2021, 1). 

The Clean Air Act and the EPA laws and regulations against harmful PM2.5 air pollutant matter

helena.dav

The most common air pollutants are called criteria pollutants and are regulated by the Clean Air Act and the EPA. These pollutants are: particles, ozone, nitrogen oxides, sulfer dioxide, carbon monoxide, and lead. The EPA have sections under the CAA that help regulate factories and air pollution in the environment. For example section 108 requires the EPA to identify the pollutants that are criteria pollutants, listed above, and determine if where they are coming from and if they "endander public health or welfare". Under section 109 the EPA had to set standards across the board for air pulltion in regard to human health and to the environemtn sperately (Christopher D. Ahlers 2016, 51-52).  There are many more sections that go into detail about what the CAA can do and what the EPA members are required to do as well. 

Ahlers, Christopher D. “Wood Burning, Biomass, Air Pollution, and Climate Change.” Environmental Law 46, no. 1 (2016): 49–104.