Skip to main content

Search

DATA

jradams1
Annotation of

Pecan Street Inc. is a local 501(c)(3) that specializes in producing, analyzing, and sharing data on energy and water consumption practices as well as verifying new “smart home” technologies, electricity pricing, electric vehicle infrastructure, solar energy tech, and energy storage tech. On their company website, Pecan Street Inc. brags about having the largest utility consumption data port in the world and claims to “provide access to the world’s best data on consumer energy and water consumption behavior.” Their data source is a group of over 1000 volunteers that live in the Mueller community, a mixed use residential and commercial zone with its own microgrid that has the highest density of solar panels-plus-electric vehicles in the state of Texas. It was for this reason that the Mueller Community was chosen as one of the Austin locations for a federally funded experiment in energy storage. The project, named Austin SHINES, was co-funded by the DOE’s SunShot Initiative (during Obama’s administration) and the Texas Commission for Environmental Quality to test the efficiency of solar-plus-storage systems at different scales (household, residential/commercial, and utility scales). On October 4, 2018, Pecan Street posted a blog announcing that they had finally “crossed into the Big Data realm. With the acquisition of a few new project servers, [they] have surpassed one petabyte of data storage availability at Pecan Street.”

            According to their website, the data produced at Pecan Street is helping develop technology that can actually increase grid stability while also increasing its efficiency and capacity to incorporate distributed renewable energy resources: “Distributed storage, automated demand response, improved lighting ballasts, power supplies and grid control products can all mitigate or eliminate existing electricity challenges if they are developed using data that details the issues correctly.” Critical data scholars, however, have argued that data always require the presence of human experts to animate them (Gliteman 2013). But how, if at all, is this analytic commitment altered by the development of the “internet-of-things,” where humans are able to set parameters on smart-technology and smart-contracts, running on blockchain, so that these devices respond to data by themselves in real time?

James Adams: New Orleans Energy Governance and Utility Regulation

jradams1

When it comes to energy governance, New Orleans is set apart from the rest of Louisiana, in that their utilities are regulated by the New Orleans City Council, rather than a Public Service Commission. However, the city council's ability to effectively regulate its primary energy provider, Entergy, has continually been called into question. One of the primary  critiques leveled on the council is its over-reliance on outside consultants. The New Orleans Office of the Inspector General (OIG) found that "the Council’s regulatory approach and practices lacked basic controls to ensure transparency, prevent misconduct, and promote effective decision-making." This fact was made evident by Entergy's subcontracting of professional actors, feigning to be local constituents, to counter local opposition and fool the Council into supporting the construction of a new natural gas plant in New Orleans East. This scandal drew harsh criticism from members of local environmentalist community, putting pressure on the council to make appreciable changes to their extant regulatory model. In response, and at the reccomendation of the OIG, the council is currently taking steps to develop in-house, energy expertise so as to minimize their dependence on outside consultants. The council has also recently responded to the local community's demand for higher renewable energy portfolio standards, commissioning a new 90 Megawatt solar energy plant.

AUSTIN MACRO

jradams1
Annotation of

           Texas is the highest energy consuming state in the second highest energy consuming nation in the world (EIA 2017). In fact, Texas has led the US in energy consumption rates every year since 1960, when the Environmental Information Administration started keeping track. Texas also has a long history and reputation as an energy producer and is currently the nation’s highest producer of crude-oil, natural gas, and lignite coal, and accounts for 30% of the United States’ total oil refining capacity (EIA 2017). On the other hand, Texas has recently become a world competitor in renewable energy. This has been achievable in part due to Texas’ unique state autonomy in concern to energy production and distribution, granted by the fact that Texas’ is the only electric grid in the US that does not incur federal regulation as it does not cross any state boundaries.

            Within Texas, Austin has shown a sustained commitment to developing its renewable energy infrastructure. Beginning with its innovative GreenChoice program in the late 80’s, Austin has been among the most fervent of US cities leading the charge for renewable energy integration. In the 1990’s, when Texas passed legislation to deregulate its energy market, Austin was one of the few Texas cities to retain control of its municipal utilities. By abstaining from deregulation, Austin maintained a higher capacity to alter its resource mix in accordance to the needs and desires of local residents. Today, Austin Energy the 8th largest publicly owned utility in the US. Austin’s utility also has strong connections with local university. The city’s clean energy initiatives receive substantial support from the University of Texas, whose Energy Institute is at the cutting edge of energy challenges and opportunities. Within this institute, UT’s Webber Energy Group and Pecan Street Inc. are particularly influential local actors, researching clean-energy initiatives such as the newly launched Austin Shines Program, which tests performance and efficiency of multiple scales and of solar plus storage combinations.

           Austin’s lack of a navigable river, precious metals, fossil fuels, and richly productive farmland have resulted in the city developing its higher education, technology, governmental, and cultural industries. The tech-side has been both a blessing and a curse for Austin’s environmental movement. “Smart Growth” emerged as a prominent rhetoric in the mid-to-late 1990’s and continues to influence Austin’s development to today. Due in part to the fact that Austin has this specialization in technology, plus a population with a recognized commitment to renewable energy, Austin was chosen as the site of a federally funded initiative, Austin SHINES, to test the efficiency of solar-plus-storage systems and various scales.

            Currently, 31% of Austin’s resource mix comes from renewable energy sources, compared to 10% for Texas as a whole and 13% for the US more broadly (Austin Energy 2017). Austin has numerous incentives to reduce energy consumption, as well as optional smart devices to help increase efficiency and enable demand response (which helps insure grid security). The city’s GreenChoice program was the first of its kind, which offered customers the opportunity to pay a premium to know that they are buying renewable energy rather than energy produced from nuclear or fossil fuels.

The Texas grid is managed by the Electricity Reliability Council of Texas (ERCOT) which is located in Austin. This regulator is also in charge of keeping the grid load at acceptable levels and to generate prices and keep up with the wholesale and retail markets.

Though the City of Austin has a history of strong environmental policies, the state has notoriously strong ties to the oil and gas industry. Thus, developers have managed to use the state to get around Austin’s city legislation (Swearingen 2010).

AUSTIN ECO/ATMO

jradams1
Annotation of

West Austin is home to a number of vulnerable species of amphibians and birds, as well as revered spaces of recreation (i.e. Barton Springs) that have garnered support to prevent development in these areas, but at the expense of the gentrification of Central East Austin (Walsh 2007; Tretter 2016; Busch 2017).

 

Flooding has always been a problem in Austin but, with climate change, the rate and intensity of floods has substantially increased. The Atlas 14 study conducted by the National Oceanic and Atmospheric Administration showed a 33% increase in the amount of rain that could fall in a 24-hour period (Holtgrieve and Neely 2019). This puts an additional 3,200 buildings and residences (increased from 4,000-7,200) at risk of flooding.

 

In August of 2011, one of the hottest years on record in Austin, the Texas grid was put at severe risk due to higher than normal use of AC units. A similar event happened in July of 2018, when hourly consumer demand set back-to-back records over the course of 2 hours, when peak load exceeded 72,000 MW (Rhodes 2018). That record was broken the following day when ERCOT registered 73,000 MW.

 

Through participant observation and interviews, I will gather data on how climate change has impacted the way this project’s thought collectives think about and use energy and energy technology, as well as if and how this has impacted their energy politics.

EXDU

jradams1
Annotation of

UT Austin’s engineering department has a strong national presence in energy science. The department's Energy Institute hosts a 15 week-long Energy Symposium with weekly, public seminars given by energy experts from around the country. However, this institution has deep historical ties to Texas’ oil and gas industry. See the following quote from their website “The University of Texas at Austin has long been renowned for research related to the state’s iconic oil and gas industry. Today, university researchers are pioneering innovative ways to produce energy from these traditional sources in an environmentally responsible manner, while also leading groundbreaking research into new technologies that cover the entire spectrum of energy.”

 

Solar Austin holds a happy hour once a month, which includes a presentation by a local professional working in solar or clean energy. Recent speakers include representatives of the Clean Energy Credit Union, the Austin SHINES project, and UT Austin’s Director of Sustainability. CleanTx has a monthly “power lunch” mixer, where you can meet with local clean-tech industry leaders and entrepreneurs for networking purposes. UT’s Webber Energy Group has “Clean Energy Beers” once a month, where local members of the community get together to discuss clean energy and energy transition in Austin. (Usually) Dr. Michael Webber and members of his team at UT Austin are there and available for conversation as well.

 

Austin Energy holds a Resource Planning Working Group every two years (or so), where a “representative sample” of the community come together to learn about Austin’s energy needs and resources, and to develop a plan for transitioning to lower-carbon fuels, but within the affordability rates set by the state.