Skip to main content

Search

"Antibiotic Resistance in Louisiana"

fdabramo

I situate my research at the crossroads of history, philosophy, sociology and anthropology of science. In the past, I have focused on epigenetics, environmental research, empirical bioethics and environmental justice, within and outside the academia, as you can read here, or here. Now I am focusing on antibiotic resistance, and I use it as a lens to interpret the contradictions of the last century derived by industrial production, environmental degradation and biomedical cultures.

What interests me is the (at that time) new epistemic discourse that since the Forties has been produced to explain morphological changes of organisms produce when they experience new environmental conditions or perturbations. Through an important experiment at the base of the so-called concept of genetic assimilation, Conrad H. Waddington showed that a thermic shock can produce changes in wings’ veins of fruit flies, changes that can eventually be inherited across generations, without the environmental trigger that caused them.

This focus on production and (genetic) storage of biological differences elicited by the environment is nowadays coupled with the knowledge produced through microbiome research that explains the phenotypic patterns that recur across generations.

In a thought-provoking twist, with microbiome research, the focus shifts from production and inheritance of biological differences to production and inheritance of biological similarities. Microbiome research shows that some phenotypic patterns are allowed by ecological communities of microorganisms composing all animals. Bacteria allow the development and functioning of our bodies within an epistemic framework that is now key to understand biology. The network of vessels composing mammals’ stomach is formed through cellular differentiation and expression of genes coordinated by bacteria. The same is true for our immune system that is coordinated by gut bacteria. Food, which is an important aspect of our lives also impacts on this microecology and mediates between our biological functions and functioning of means of production whose parts dedicated to food production have immense importance for our biology and our internal and external ecologies. Antibiotic resistance is one of the crossroads where culture, biology, history and the Anthropocene meet. Indeed, Antibiotic resistance shows that means of production of our societies have an even more widespread, deep and allegedly unexpected impact on the biology of animals and plants. The microorganism can indeed adapt to resist the selective toxicity of antibiotics. Moreover, bacteria can transfer their genetic code horizontally, by touch, so that we can acquire antibiotic resistance by eating food that functions as a vector, by hosting lice on our heads and many other contacts. Bacteria that are resistant to antibiotics that have been used as growth factors in animal husbandry and to prevent diseases in livestock and aquaculture, spread in natural ecosystems and can be found in wild species. Rivers and estuarine waters are places hosting antibiotic resistance.

Searching on PubMed (the search engine for biomedical literature) titles of articles containing the terms ‘antimicrobial’ and ‘Louisiana’ I retrieved just one twelve-years-old article. No results with terms such as 'Mississippi' or 'New Orleans'. The authors collected and analysed Oysters from both waters of Louisiana Gulf and in restaurants and food retailers in Baton Rouge. In most of the samples gathered, scientists recognised the presence of bacteria (Vibrio parahaemolyticus and Vibrio vulnificus) resistant to specific antimicrobials. Food production is indeed the first factor in terms of the quantity of antibiotics used. This use and related antibiotic resistance impact all the living beings present in a specific area, and can easily travel around the globe through many channels. As Littman & Viens have highlighted, a sustainable future is a future without antibiotics as “there may be no truly sustainable way of using antibiotics in the long-run, as microorganisms have shown to be almost infinitely adaptable since the first introduction of antibiotics” (Littman & Viens 2015). But in the meanwhile, we need to use them and antibiotic resistance is a phenomenon that can be better studied through environmental research, by analysing wild species and emissions nearby livestock, for instance.

The study that I retrieved focuses on Oysters. But what about antibiotic resistance conveyed through food that is consumed by the most?

What about exposures of communities that are living in highly polluted areas?

And what is the additive value on antibiotic resistance for individuals who experience the presence of industrial pollutants and that live in areas where cancer epidemics are registered?

In this respect, there is a strategy to cope with the issue of antibiotic resistance promoted by the Center for Disease Control and Prevention. The document doesn’t mention any action to monitor and regulate the production and usage of antibiotics in livestock. Nevertheless, the CDC wants to scrutinise, through genome sequencing, “Listeria, Salmonella, Campylobacter, and E. coli and uploads sequence data into PulseNet for nationwide monitoring of outbreaks and trends.” Moreover, the document reports that “In Fiscal Year 2019, Louisiana will begin simultaneously monitoring these isolates for resistance genes. When outbreaks are detected, local CDC-supported epidemiologists investigate the cases to stop spread.”

The questions that I would like to ask (to local ppl, activists, researchers, practitioners..) are:

What could be the epidemiologic characteristics (socioeconomic status, gender, residence..) of the populations more vulnerable to antibiotic resistance?

What is the additive role of antibiotic resistance for people living in highly polluted areas?

What is the impact of antibiotic resistance for people and patients living in areas where cancer incidence is high?

 

And on the long run I am interested in imagining possible strategies to not only living with the problem but also to tackle the problem itself, which means to develop strategies to answer the questions:

Why antibiotic resistance, which is known since a century, it’s a problem on the rise?

What is the role and interest of capitalism, in terms of profit-making of corporations, knowledge production and environmental degradation, in not being able to resolve antibiotic resistance?

What can be strategies of local communities to tackle the problem and to promote environmental justice in terms of alliances with ecologists, doctors, epidemiologists and other activists?

pece_annotation_1478452171

wolmad

I found the parts of the film regarding the initial investigation and the release fo marine corps documents on the internet to be most compelling, because this was the establishment of the proof that the corps knew fully about the potential health concerns at Camp Lejeune and actively covered it up and did nothing to improve the conditions until it was too late.

pece_annotation_1478963014

wolmad

In this film, three groups of stakeholders are portrayed; doctors, patients, and mortality. The doctors depicted fight a loosing battle against aging, death, and terminal illness like cancer. They need to come to terms with the fact that they can't save everyone and they need to honor their patients wishes for how they want to conduct the end of their lives. The patients need to accept their impending death with the assistance of their doctors and advocate for how they want to conduct the end of their lives. And mortality is an object which is immaterial but ever present, and both doctors and patients need to learn how to grasp with it.

pece_annotation_1479010171

wolmad

This article utilizes excerpts from interviews to illustrate the story narrative of an illness, showing how emotion and values are reflected in the creation of a "plot" of the narrative, and uses statistics and broader research to analize these stories from a broader, more societal perspective. 

pece_annotation_1473350972

wolmad
Annotation of

The Red Cross opened a Red Cross R&D in 1961 to further existing research on blood component technology, blood safety, plasma-derived therapeutics, transfusion medicine, and biomedical science. Red Cross R&D has made accievements in the following areas, listed on their website:

  • Developed a technique to freeze red blood cells, preserving their viability for up to 3 years, helping to ensure a steady supply of red cells for patients needing rare blood types. (1971)
  • Contributed to the development of bar-coding for blood products. (1977)
  • Developed procedures for large-scale purification of therapeutic blood proteins like gamma globulin and factor VIII. (1978)
  • Collaborated with scientists at the Centers for Disease Control and Prevention (CDC) to define the window period—the length of time between infection with the virus and the earliest stage in infection that can be detected by a test—for human immunodeficiency virus (HIV) following implementation of universal HIV testing of donor blood. (1994)
  • Investigated the prevalence of blood-transmitted diseases like human T-lymphotropic virus-1 (HTLV-1) and Chagas disease, providing key data that led to implementation of testing for these diseases. (HTLV-1 in 1987, Chagas disease in 2008)
  • Continue to facilitate improvements in bacterial testing of blood products.
  • Investigated the role of antibodies in female-source plasma in causing transfusion-related acute lung injury (TRALI), leading to reduction in the incidence of TRALI by providing male-predominant plasma for transfusion. (2009)
  • Modified height and weight restrictions for donors younger than 19, which has significantly reduced adverse reactions among young donors. (2009)

pece_annotation_1480177143

wolmad

Based on this article's bibliography, it appears that a large ammount of information from this article was drawn from MSF reports and essays, United Nations reports, and previous scholarly research done in the fields of humanitarianism, feminism, and the social aspects of medicine.