"Antibiotic Resistance in Louisiana"
fdabramoI situate my research at the crossroads of history, philosophy, sociology and anthropology of science. In the past, I have focused on epigenetics, environmental research, empirical bioethics and environmental justice, within and outside the academia, as you can read here, or here. Now I am focusing on antibiotic resistance, and I use it as a lens to interpret the contradictions of the last century derived by industrial production, environmental degradation and biomedical cultures.
What interests me is the (at that time) new epistemic discourse that since the Forties has been produced to explain morphological changes of organisms produce when they experience new environmental conditions or perturbations. Through an important experiment at the base of the so-called concept of genetic assimilation, Conrad H. Waddington showed that a thermic shock can produce changes in wings’ veins of fruit flies, changes that can eventually be inherited across generations, without the environmental trigger that caused them.
This focus on production and (genetic) storage of biological differences elicited by the environment is nowadays coupled with the knowledge produced through microbiome research that explains the phenotypic patterns that recur across generations.
In a thought-provoking twist, with microbiome research, the focus shifts from production and inheritance of biological differences to production and inheritance of biological similarities. Microbiome research shows that some phenotypic patterns are allowed by ecological communities of microorganisms composing all animals. Bacteria allow the development and functioning of our bodies within an epistemic framework that is now key to understand biology. The network of vessels composing mammals’ stomach is formed through cellular differentiation and expression of genes coordinated by bacteria. The same is true for our immune system that is coordinated by gut bacteria. Food, which is an important aspect of our lives also impacts on this microecology and mediates between our biological functions and functioning of means of production whose parts dedicated to food production have immense importance for our biology and our internal and external ecologies. Antibiotic resistance is one of the crossroads where culture, biology, history and the Anthropocene meet. Indeed, Antibiotic resistance shows that means of production of our societies have an even more widespread, deep and allegedly unexpected impact on the biology of animals and plants. The microorganism can indeed adapt to resist the selective toxicity of antibiotics. Moreover, bacteria can transfer their genetic code horizontally, by touch, so that we can acquire antibiotic resistance by eating food that functions as a vector, by hosting lice on our heads and many other contacts. Bacteria that are resistant to antibiotics that have been used as growth factors in animal husbandry and to prevent diseases in livestock and aquaculture, spread in natural ecosystems and can be found in wild species. Rivers and estuarine waters are places hosting antibiotic resistance.
Searching on PubMed (the search engine for biomedical literature) titles of articles containing the terms ‘antimicrobial’ and ‘Louisiana’ I retrieved just one twelve-years-old article. No results with terms such as 'Mississippi' or 'New Orleans'. The authors collected and analysed Oysters from both waters of Louisiana Gulf and in restaurants and food retailers in Baton Rouge. In most of the samples gathered, scientists recognised the presence of bacteria (Vibrio parahaemolyticus and Vibrio vulnificus) resistant to specific antimicrobials. Food production is indeed the first factor in terms of the quantity of antibiotics used. This use and related antibiotic resistance impact all the living beings present in a specific area, and can easily travel around the globe through many channels. As Littman & Viens have highlighted, a sustainable future is a future without antibiotics as “there may be no truly sustainable way of using antibiotics in the long-run, as microorganisms have shown to be almost infinitely adaptable since the first introduction of antibiotics” (Littman & Viens 2015). But in the meanwhile, we need to use them and antibiotic resistance is a phenomenon that can be better studied through environmental research, by analysing wild species and emissions nearby livestock, for instance.
The study that I retrieved focuses on Oysters. But what about antibiotic resistance conveyed through food that is consumed by the most?
What about exposures of communities that are living in highly polluted areas?
And what is the additive value on antibiotic resistance for individuals who experience the presence of industrial pollutants and that live in areas where cancer epidemics are registered?
In this respect, there is a strategy to cope with the issue of antibiotic resistance promoted by the Center for Disease Control and Prevention. The document doesn’t mention any action to monitor and regulate the production and usage of antibiotics in livestock. Nevertheless, the CDC wants to scrutinise, through genome sequencing, “Listeria, Salmonella, Campylobacter, and E. coli and uploads sequence data into PulseNet for nationwide monitoring of outbreaks and trends.” Moreover, the document reports that “In Fiscal Year 2019, Louisiana will begin simultaneously monitoring these isolates for resistance genes. When outbreaks are detected, local CDC-supported epidemiologists investigate the cases to stop spread.”
The questions that I would like to ask (to local ppl, activists, researchers, practitioners..) are:
What could be the epidemiologic characteristics (socioeconomic status, gender, residence..) of the populations more vulnerable to antibiotic resistance?
What is the additive role of antibiotic resistance for people living in highly polluted areas?
What is the impact of antibiotic resistance for people and patients living in areas where cancer incidence is high?
And on the long run I am interested in imagining possible strategies to not only living with the problem but also to tackle the problem itself, which means to develop strategies to answer the questions:
Why antibiotic resistance, which is known since a century, it’s a problem on the rise?
What is the role and interest of capitalism, in terms of profit-making of corporations, knowledge production and environmental degradation, in not being able to resolve antibiotic resistance?
What can be strategies of local communities to tackle the problem and to promote environmental justice in terms of alliances with ecologists, doctors, epidemiologists and other activists?
pece_annotation_1481658895
michael.leeThe platform enables sharing of medical cases and discussion through a HIPAA compliant system.
pece_annotation_1474236440
michael.leeThe NYS Ebola Preparedness Plan was a multilateral set of guidelines and protocols set forth by the Office of the Governor of the State of New York in anticipation of a potential outbreak of the ebola virus disease, also known as ebola hemorrhagic fever, in the State of New York. The stated goal of the policy was to prevent the further transmission and spread of the disease in the event of a isolated cases. The policy included guidelines for isolation, quarantine, treatment, and transportation, and involved numerous organizations, including various hospitals, EMS agencies, public safety departments, and transportation authorities.
pece_annotation_1476656352
michael.leeThe primary function of the US Department of Veterans Affairs is to provide benefits and support military veterans following their time in service. Although benefits have been provided to military veterans since the Revolutionary War, the VA administration was formally founded in 1930. The department now provides healthcare, insurance, education, financial assistance, and burial/memorial service to military veterans and their families.
pece_annotation_1481635656
michael.leeIn presenting the case of Riker's Island, the author cites numerous sources, including government officials, government agencies, industry experts, photos and maps of the island and facilities, activist groups, and two former inmates.
pece_annotation_1481642942
michael.leeIn this article, the author discusses the Chernobyl disaster and its impact on those who were exposed to the nuclear radiation. Moreover, she discusses the healthcare, disaster aid, and financial aid that were provided or withheld from those who survived and were affected by the disaster. The author highlights the interaction of emergency response, politics, healthcare, and economics.
pece_annotation_1481645525
michael.leeThe IPPNW is a non-partisan federation of various national medical groups from over 63 countries. The organization represents physicians, medical students, healthcare professionals, and other concerned stakeholders.
pece_annotation_1481661391
michael.lee- "it is not surprising that gender-based violence should become an issue; having been categorised as a human rights violation, one which garnered significant attention, it could not be easily ignored or brushed aside as a ‘private’ matter. Still, approaching gender-based violence as a humanitarian issue required some translation. Humanitarians are primarily concerned with saving lives and relieving suffering; humanitarianism of the sort practised by MSF is most significantly focused on health, and the lives and wellbeing of populations."
- "I argue that the shift to gender-based violence as the exemplary humanitarian problem could not have happened without the prior move to medicalise gender-based violence, and render it a medical condition like all others."
- "Approaching gender-based violence as a medical or health issue alters how violence is both approached and understood; that is, rather than understanding gender violence in the context of gendered relations of power, or as part of larger histories and expressions of inequality which are inseparable from histories of class or race or colonialism, this type of medicalisation transforms gender-based violence into an emergency illness, requiring immediate intervention."
pece_annotation_1474852607
michael.leeThis article was created by Dr. Scott Gabriel Knowles, PhD, an associate professor and department head of the Department of History, Center for Science, Technoloy, and Society at Drexel University. Dr. Knowles earned both his Bachelor of Arts degree in History and Philosophy and his Master of Arts degree in History from The University of Texas at Austin. He later earned his Doctorate degree in History of Science, Medicine, and Technology from Johns Hopkins University.
His research is focused primarily on risk and disaster with interests in modern cities, technology, and policies. He has authored several publications. He also currently serves as a faculty research fellow of the Disaster Research Center at the University of Delaware and is a member of the Fukushima Forum collaborative research community.