Skip to main content

Search

"Antibiotic Resistance in Louisiana"

fdabramo

I situate my research at the crossroads of history, philosophy, sociology and anthropology of science. In the past, I have focused on epigenetics, environmental research, empirical bioethics and environmental justice, within and outside the academia, as you can read here, or here. Now I am focusing on antibiotic resistance, and I use it as a lens to interpret the contradictions of the last century derived by industrial production, environmental degradation and biomedical cultures.

What interests me is the (at that time) new epistemic discourse that since the Forties has been produced to explain morphological changes of organisms produce when they experience new environmental conditions or perturbations. Through an important experiment at the base of the so-called concept of genetic assimilation, Conrad H. Waddington showed that a thermic shock can produce changes in wings’ veins of fruit flies, changes that can eventually be inherited across generations, without the environmental trigger that caused them.

This focus on production and (genetic) storage of biological differences elicited by the environment is nowadays coupled with the knowledge produced through microbiome research that explains the phenotypic patterns that recur across generations.

In a thought-provoking twist, with microbiome research, the focus shifts from production and inheritance of biological differences to production and inheritance of biological similarities. Microbiome research shows that some phenotypic patterns are allowed by ecological communities of microorganisms composing all animals. Bacteria allow the development and functioning of our bodies within an epistemic framework that is now key to understand biology. The network of vessels composing mammals’ stomach is formed through cellular differentiation and expression of genes coordinated by bacteria. The same is true for our immune system that is coordinated by gut bacteria. Food, which is an important aspect of our lives also impacts on this microecology and mediates between our biological functions and functioning of means of production whose parts dedicated to food production have immense importance for our biology and our internal and external ecologies. Antibiotic resistance is one of the crossroads where culture, biology, history and the Anthropocene meet. Indeed, Antibiotic resistance shows that means of production of our societies have an even more widespread, deep and allegedly unexpected impact on the biology of animals and plants. The microorganism can indeed adapt to resist the selective toxicity of antibiotics. Moreover, bacteria can transfer their genetic code horizontally, by touch, so that we can acquire antibiotic resistance by eating food that functions as a vector, by hosting lice on our heads and many other contacts. Bacteria that are resistant to antibiotics that have been used as growth factors in animal husbandry and to prevent diseases in livestock and aquaculture, spread in natural ecosystems and can be found in wild species. Rivers and estuarine waters are places hosting antibiotic resistance.

Searching on PubMed (the search engine for biomedical literature) titles of articles containing the terms ‘antimicrobial’ and ‘Louisiana’ I retrieved just one twelve-years-old article. No results with terms such as 'Mississippi' or 'New Orleans'. The authors collected and analysed Oysters from both waters of Louisiana Gulf and in restaurants and food retailers in Baton Rouge. In most of the samples gathered, scientists recognised the presence of bacteria (Vibrio parahaemolyticus and Vibrio vulnificus) resistant to specific antimicrobials. Food production is indeed the first factor in terms of the quantity of antibiotics used. This use and related antibiotic resistance impact all the living beings present in a specific area, and can easily travel around the globe through many channels. As Littman & Viens have highlighted, a sustainable future is a future without antibiotics as “there may be no truly sustainable way of using antibiotics in the long-run, as microorganisms have shown to be almost infinitely adaptable since the first introduction of antibiotics” (Littman & Viens 2015). But in the meanwhile, we need to use them and antibiotic resistance is a phenomenon that can be better studied through environmental research, by analysing wild species and emissions nearby livestock, for instance.

The study that I retrieved focuses on Oysters. But what about antibiotic resistance conveyed through food that is consumed by the most?

What about exposures of communities that are living in highly polluted areas?

And what is the additive value on antibiotic resistance for individuals who experience the presence of industrial pollutants and that live in areas where cancer epidemics are registered?

In this respect, there is a strategy to cope with the issue of antibiotic resistance promoted by the Center for Disease Control and Prevention. The document doesn’t mention any action to monitor and regulate the production and usage of antibiotics in livestock. Nevertheless, the CDC wants to scrutinise, through genome sequencing, “Listeria, Salmonella, Campylobacter, and E. coli and uploads sequence data into PulseNet for nationwide monitoring of outbreaks and trends.” Moreover, the document reports that “In Fiscal Year 2019, Louisiana will begin simultaneously monitoring these isolates for resistance genes. When outbreaks are detected, local CDC-supported epidemiologists investigate the cases to stop spread.”

The questions that I would like to ask (to local ppl, activists, researchers, practitioners..) are:

What could be the epidemiologic characteristics (socioeconomic status, gender, residence..) of the populations more vulnerable to antibiotic resistance?

What is the additive role of antibiotic resistance for people living in highly polluted areas?

What is the impact of antibiotic resistance for people and patients living in areas where cancer incidence is high?

 

And on the long run I am interested in imagining possible strategies to not only living with the problem but also to tackle the problem itself, which means to develop strategies to answer the questions:

Why antibiotic resistance, which is known since a century, it’s a problem on the rise?

What is the role and interest of capitalism, in terms of profit-making of corporations, knowledge production and environmental degradation, in not being able to resolve antibiotic resistance?

What can be strategies of local communities to tackle the problem and to promote environmental justice in terms of alliances with ecologists, doctors, epidemiologists and other activists?

pece_annotation_1524613204

Dhruv.Patel

the community as a whole, along with the CSO, can be seen as a resilience due to the fact that the CSO community and many peopole in the community as a whole have helped to improve the system that is currently in use especially since many of the systems  are outdated. granted, there are those who could care less in the community, but there are those that are taking steps toward the end goal of cleaning up our environment.

pece_annotation_1524702174

Dhruv.Patel

Newark helped to set up the JFK Center as a shelter with the help of the American Red Cross. further more, "Booker also urged residents to check on their neighbors, particularly the elderly, to be sure they have adequate supplies and protection during the hurricane"

many recommendations are also being made by the city of Newark to advize their citizens

pece_annotation_1524613037

Dhruv.Patel

as stated in the article two things have been done to help prevent sewage in overflow systems.one is that, "Nearly 65 overflows already have been permanently closed off, according to the Dept. of Environmental Protection." also, many other communities spent millions of dollars to install grates and shields on the overflow pipes. this would help prevent most trash from entering the system. 

pece_annotation_1524698132

Dhruv.Patel

The EPA has a large impact to help minimize the hazard. one of the few things that they are doing is provinding the "critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe." also, the EPa designated areas that meet and dont meet the the standards for the PM standards and ozone standards. 

pece_annotation_1524701389

Dhruv.Patel

Newark recommends to have things like handy in case they are needed:

  • flashlights
  • batteries
  • a first aid kit
  • emergency food and water
  • a non electric can opener
  • medicines
  • cash

they also recommend to put these things in a room that you deem safe along with a battery operated tv/radio, charge all your electronics and turn all the propane tanks in your possession off before the storm

pece_annotation_1524612267

Dhruv.Patel

In this article, It talks mainly about New Jerseys CSO communities and how the CSO's are and have been making steps towards reducing overflow and even though the current solutions being used right now is a way to help reduce the overflow, these systems are also major sources of water pollution. however, CSO's plan to help reduce overflow and help prevent extensive damage from hurricanes will, be beneficial to the public even though it may take a few years for it to be completed and be of use to the public.