COVID-19 Rapid Student Interview Project
This project aims to provide an engaging project for post-secondary students (undergraduate and graduate) to gain experience with qualitative research methodology while contributing to public
This project aims to provide an engaging project for post-secondary students (undergraduate and graduate) to gain experience with qualitative research methodology while contributing to public
I situate my research at the crossroads of history, philosophy, sociology and anthropology of science. In the past, I have focused on epigenetics, environmental research, empirical bioethics and environmental justice, within and outside the academia, as you can read here, or here. Now I am focusing on antibiotic resistance, and I use it as a lens to interpret the contradictions of the last century derived by industrial production, environmental degradation and biomedical cultures.
What interests me is the (at that time) new epistemic discourse that since the Forties has been produced to explain morphological changes of organisms produce when they experience new environmental conditions or perturbations. Through an important experiment at the base of the so-called concept of genetic assimilation, Conrad H. Waddington showed that a thermic shock can produce changes in wings’ veins of fruit flies, changes that can eventually be inherited across generations, without the environmental trigger that caused them.
This focus on production and (genetic) storage of biological differences elicited by the environment is nowadays coupled with the knowledge produced through microbiome research that explains the phenotypic patterns that recur across generations.
In a thought-provoking twist, with microbiome research, the focus shifts from production and inheritance of biological differences to production and inheritance of biological similarities. Microbiome research shows that some phenotypic patterns are allowed by ecological communities of microorganisms composing all animals. Bacteria allow the development and functioning of our bodies within an epistemic framework that is now key to understand biology. The network of vessels composing mammals’ stomach is formed through cellular differentiation and expression of genes coordinated by bacteria. The same is true for our immune system that is coordinated by gut bacteria. Food, which is an important aspect of our lives also impacts on this microecology and mediates between our biological functions and functioning of means of production whose parts dedicated to food production have immense importance for our biology and our internal and external ecologies. Antibiotic resistance is one of the crossroads where culture, biology, history and the Anthropocene meet. Indeed, Antibiotic resistance shows that means of production of our societies have an even more widespread, deep and allegedly unexpected impact on the biology of animals and plants. The microorganism can indeed adapt to resist the selective toxicity of antibiotics. Moreover, bacteria can transfer their genetic code horizontally, by touch, so that we can acquire antibiotic resistance by eating food that functions as a vector, by hosting lice on our heads and many other contacts. Bacteria that are resistant to antibiotics that have been used as growth factors in animal husbandry and to prevent diseases in livestock and aquaculture, spread in natural ecosystems and can be found in wild species. Rivers and estuarine waters are places hosting antibiotic resistance.
Searching on PubMed (the search engine for biomedical literature) titles of articles containing the terms ‘antimicrobial’ and ‘Louisiana’ I retrieved just one twelve-years-old article. No results with terms such as 'Mississippi' or 'New Orleans'. The authors collected and analysed Oysters from both waters of Louisiana Gulf and in restaurants and food retailers in Baton Rouge. In most of the samples gathered, scientists recognised the presence of bacteria (Vibrio parahaemolyticus and Vibrio vulnificus) resistant to specific antimicrobials. Food production is indeed the first factor in terms of the quantity of antibiotics used. This use and related antibiotic resistance impact all the living beings present in a specific area, and can easily travel around the globe through many channels. As Littman & Viens have highlighted, a sustainable future is a future without antibiotics as “there may be no truly sustainable way of using antibiotics in the long-run, as microorganisms have shown to be almost infinitely adaptable since the first introduction of antibiotics” (Littman & Viens 2015). But in the meanwhile, we need to use them and antibiotic resistance is a phenomenon that can be better studied through environmental research, by analysing wild species and emissions nearby livestock, for instance.
The study that I retrieved focuses on Oysters. But what about antibiotic resistance conveyed through food that is consumed by the most?
What about exposures of communities that are living in highly polluted areas?
And what is the additive value on antibiotic resistance for individuals who experience the presence of industrial pollutants and that live in areas where cancer epidemics are registered?
In this respect, there is a strategy to cope with the issue of antibiotic resistance promoted by the Center for Disease Control and Prevention. The document doesn’t mention any action to monitor and regulate the production and usage of antibiotics in livestock. Nevertheless, the CDC wants to scrutinise, through genome sequencing, “Listeria, Salmonella, Campylobacter, and E. coli and uploads sequence data into PulseNet for nationwide monitoring of outbreaks and trends.” Moreover, the document reports that “In Fiscal Year 2019, Louisiana will begin simultaneously monitoring these isolates for resistance genes. When outbreaks are detected, local CDC-supported epidemiologists investigate the cases to stop spread.”
The questions that I would like to ask (to local ppl, activists, researchers, practitioners..) are:
What could be the epidemiologic characteristics (socioeconomic status, gender, residence..) of the populations more vulnerable to antibiotic resistance?
What is the additive role of antibiotic resistance for people living in highly polluted areas?
What is the impact of antibiotic resistance for people and patients living in areas where cancer incidence is high?
And on the long run I am interested in imagining possible strategies to not only living with the problem but also to tackle the problem itself, which means to develop strategies to answer the questions:
Why antibiotic resistance, which is known since a century, it’s a problem on the rise?
What is the role and interest of capitalism, in terms of profit-making of corporations, knowledge production and environmental degradation, in not being able to resolve antibiotic resistance?
What can be strategies of local communities to tackle the problem and to promote environmental justice in terms of alliances with ecologists, doctors, epidemiologists and other activists?
Many of the 50,000 residents of Ironbound are overburdened by polluting facilities and air pollutants from the second largest seaport in the country, an international airport, and rail lines.
25% percent of the children in the community suffer from asthma, which is three times the state average.
The technical resources developed for the Ironbound community can be used by other communities across the country to develop their own air monitoring programs in areas where pollution is a concern.
Yes they have a way in plan to help address this issue to be resolved over the next couple years. Working with the commission, the students to help create better and improved ways to deal with sewage waste. Already there is a "solids and floatables" control that has been in place, which has significantly helped reduce the space that trash and other objects to not take up space that could be used by the water flow. This has also reduced the amount of trash that was getting dumped into waterways.
The main point of the article was that EPA researchers input portable air sensors that monitor levels of particulate matter and nitrogen oxide- pollutants that cause short and long-term health effects and are regulated under Clean Air Act. The goal was to get good on-the-ground air quality data for our environmental justice community. Data that is collected, understood, and used by those being directly impacted by the pollution. This was supported by the input of EPA air sensors installed into the communities.
The membership is comprised of the Passaic Valley Sewage Commission working in hands with New Jersey Future. The NJ future consist of students from their own communities so boht working together, the community and the commission help build and work better together towards creating better and quick solutions.
Yes, filing complaints in one way might help reduce pollution but it won't completely eliminate it. I think by filing complaints, it does give the issue precendence in coming to the top so people become more aware by it, but along wiht complaining people need to take action and come up with plans to resolve the complaints.
The kind of technology and/or infrastructure that they rely on are one big road map. Having an eye on each area as a whole not only helps the organization aide in seeing where the problem relys, but also has the commuities be able to keep an eye out to pinpoint the exacy areas that have the problems. This also helps by not only the organizations but also the communities being able to come up with better and quicker solutions.
The numbers and totals on the damage done by the hurricane were given out by total occupied after the storm had hit. Most importantly then the numbers, the pictures of the storm before/after is what occupied the whole research. More then words the pictures spoke on how big this really was, and then the numbers of the damage were also given which made it complete on how big of a damge this had really caused.
Although reducing air pollution is very hard nowadays, however people can take precaution especailly in the way in which they use means of transportation in their daily lives. Eliminating air pollution is not possible but their are many ways in which we can reduce it. First off by choosing a better transportation method everyday, instead taking public transport, or driving your car when not needed. Suppose you want to make a quick food run to a place nearby, why not walk there or maybe even ride your bike, saving fuel and the emissions that would be emitted from them when you use those transportations. It is small steps that each person can take in their daily lives that would help reduce pollution overtime. Also getting out there and supporting causes that push for cleaner air, if each person played their part in their own communities instead of leaving it up to others, we would definitley elimiante a lot of waster.