Skip to main content

Search

"Antibiotic Resistance in Louisiana"

fdabramo

I situate my research at the crossroads of history, philosophy, sociology and anthropology of science. In the past, I have focused on epigenetics, environmental research, empirical bioethics and environmental justice, within and outside the academia, as you can read here, or here. Now I am focusing on antibiotic resistance, and I use it as a lens to interpret the contradictions of the last century derived by industrial production, environmental degradation and biomedical cultures.

What interests me is the (at that time) new epistemic discourse that since the Forties has been produced to explain morphological changes of organisms produce when they experience new environmental conditions or perturbations. Through an important experiment at the base of the so-called concept of genetic assimilation, Conrad H. Waddington showed that a thermic shock can produce changes in wings’ veins of fruit flies, changes that can eventually be inherited across generations, without the environmental trigger that caused them.

This focus on production and (genetic) storage of biological differences elicited by the environment is nowadays coupled with the knowledge produced through microbiome research that explains the phenotypic patterns that recur across generations.

In a thought-provoking twist, with microbiome research, the focus shifts from production and inheritance of biological differences to production and inheritance of biological similarities. Microbiome research shows that some phenotypic patterns are allowed by ecological communities of microorganisms composing all animals. Bacteria allow the development and functioning of our bodies within an epistemic framework that is now key to understand biology. The network of vessels composing mammals’ stomach is formed through cellular differentiation and expression of genes coordinated by bacteria. The same is true for our immune system that is coordinated by gut bacteria. Food, which is an important aspect of our lives also impacts on this microecology and mediates between our biological functions and functioning of means of production whose parts dedicated to food production have immense importance for our biology and our internal and external ecologies. Antibiotic resistance is one of the crossroads where culture, biology, history and the Anthropocene meet. Indeed, Antibiotic resistance shows that means of production of our societies have an even more widespread, deep and allegedly unexpected impact on the biology of animals and plants. The microorganism can indeed adapt to resist the selective toxicity of antibiotics. Moreover, bacteria can transfer their genetic code horizontally, by touch, so that we can acquire antibiotic resistance by eating food that functions as a vector, by hosting lice on our heads and many other contacts. Bacteria that are resistant to antibiotics that have been used as growth factors in animal husbandry and to prevent diseases in livestock and aquaculture, spread in natural ecosystems and can be found in wild species. Rivers and estuarine waters are places hosting antibiotic resistance.

Searching on PubMed (the search engine for biomedical literature) titles of articles containing the terms ‘antimicrobial’ and ‘Louisiana’ I retrieved just one twelve-years-old article. No results with terms such as 'Mississippi' or 'New Orleans'. The authors collected and analysed Oysters from both waters of Louisiana Gulf and in restaurants and food retailers in Baton Rouge. In most of the samples gathered, scientists recognised the presence of bacteria (Vibrio parahaemolyticus and Vibrio vulnificus) resistant to specific antimicrobials. Food production is indeed the first factor in terms of the quantity of antibiotics used. This use and related antibiotic resistance impact all the living beings present in a specific area, and can easily travel around the globe through many channels. As Littman & Viens have highlighted, a sustainable future is a future without antibiotics as “there may be no truly sustainable way of using antibiotics in the long-run, as microorganisms have shown to be almost infinitely adaptable since the first introduction of antibiotics” (Littman & Viens 2015). But in the meanwhile, we need to use them and antibiotic resistance is a phenomenon that can be better studied through environmental research, by analysing wild species and emissions nearby livestock, for instance.

The study that I retrieved focuses on Oysters. But what about antibiotic resistance conveyed through food that is consumed by the most?

What about exposures of communities that are living in highly polluted areas?

And what is the additive value on antibiotic resistance for individuals who experience the presence of industrial pollutants and that live in areas where cancer epidemics are registered?

In this respect, there is a strategy to cope with the issue of antibiotic resistance promoted by the Center for Disease Control and Prevention. The document doesn’t mention any action to monitor and regulate the production and usage of antibiotics in livestock. Nevertheless, the CDC wants to scrutinise, through genome sequencing, “Listeria, Salmonella, Campylobacter, and E. coli and uploads sequence data into PulseNet for nationwide monitoring of outbreaks and trends.” Moreover, the document reports that “In Fiscal Year 2019, Louisiana will begin simultaneously monitoring these isolates for resistance genes. When outbreaks are detected, local CDC-supported epidemiologists investigate the cases to stop spread.”

The questions that I would like to ask (to local ppl, activists, researchers, practitioners..) are:

What could be the epidemiologic characteristics (socioeconomic status, gender, residence..) of the populations more vulnerable to antibiotic resistance?

What is the additive role of antibiotic resistance for people living in highly polluted areas?

What is the impact of antibiotic resistance for people and patients living in areas where cancer incidence is high?

 

And on the long run I am interested in imagining possible strategies to not only living with the problem but also to tackle the problem itself, which means to develop strategies to answer the questions:

Why antibiotic resistance, which is known since a century, it’s a problem on the rise?

What is the role and interest of capitalism, in terms of profit-making of corporations, knowledge production and environmental degradation, in not being able to resolve antibiotic resistance?

What can be strategies of local communities to tackle the problem and to promote environmental justice in terms of alliances with ecologists, doctors, epidemiologists and other activists?

pece_annotation_1480105126

maryclare.crochiere

"It is tempting for a medical social scientist to enumerate the cultural beliefs concerning thecause and workings of epilepsy, then compare these with beliefs in other societies. People of course reason about illness, and culture provides the logic of that rationality. I have resisted, however, focusing on the structure of reasoning. The transformation of these narratives and the modes of aesthetic response associated with stories into "beliefs" or "explanation" would be extremely misleading."

"I began this chapter with questions about the relation of "fainting" to "epilepsy" in Turkish culture provoked by Meliha Hanim' s stories about her illness. Through the course of our research it became clear that epilepsy belongs in popular discourse to the larger domain of "fainting." This should come as no surprise, not only because fainting is less stigmatizing than epilepsy in Turkish culture."

"Emine was silent. Her story was told exclusively by those around her."

pece_annotation_1472923039

maryclare.crochiere

Many other research papers, articles, books, and sources of research were referencd in the article. The author read and studied a lot of research in various areas and covering all of the topics discussed in this paper, then strengthened ideas and concepts with enough support from hard research to write this article.

pece_annotation_1473270922

maryclare.crochiere

Paul E Farmer, Bruce Nizeye, Sara Stulac, Salmaan Keshavjee are listed as the authors of this paper. They work with the health workers  in suffering countries, like Haiti. Farmer is a co-founder of Partners in Health, as well as a physician and anthropologist. Stulac is an MD, MPH, specializing in pediatrics, and is also associated with PIH. Keshavjee is an MD, PhD, professor at Harvard of Global Health and Social Medicine. They are all professionals in the field of medicine, and through the PIH, they are well acquainted with responding to global health issues.

pece_annotation_1474159268

maryclare.crochiere

" At just the moment when it seemed that infectious disease was about to be conquered, and that the critical health problems of the industrialized world now involved chronic disease and diseases of lifestyle, experts warned, we were witnessing a “return of the microbe.”"

" The aim of such techniques is not to manage known disease but to address vulnerabilities in health infrastructure by, for example, strengthening hospital surge capacity, stockpiling drugs, exercising response protocols, and vaccinating first responders. Approaches based on preparedness may not be guided by rigorous cost-benefit analysis. Rather, they are aimed at developing the capability to respond to various types of potentially catastrophic biological events."

"Security — the freedom from fear or risk — always suggests an absolute demand; security has, as Foucault wrote, no principle of limitation. There is no such thing as being “too secure.”51 Living with risk, by contrast, acknowledges a more complex calculus. It requires new forms of political and ethical reasoning that take into account questions that are often only implicit in discussions of biosecurity interventions."

pece_annotation_1474925437

maryclare.crochiere

The first hand interviews from first responders are compiled in a way that goes through the stories of what heppened, how health information was released and changed. The first repsonder stories are intermixed with testimonies from the EPA workers, showing differences in the science that was found and the press releases disclosing the health concerns. Many tear up upon realizing how their health will hurt their families. The doctors in the area caught onto the trends in poor health and started a monitoring program to make sure everyone got the medical screening and help they needed. The lives of all of the first responders and their families were changed drastically from their public service.